Area Of A Circle, Sector Of A Circle and Circular Ring

Figure 113.2

Consider figure 113.2 (a)
Area of Circle $=\pi \mathbf{r}^{2}$

Area of Sector Of A Circle $=(\mathbf{1} / \mathbf{2}) \mathbf{r}^{2} \boldsymbol{\theta}$

Derivation of Area of Circle

Line $\mathrm{OA}=$ radius of circle $=r$
Line $\mathrm{OB}=$ radius of circle $=r$
Let angle, $<\mathrm{BOA}=\mathrm{d} \theta$ radians
Let line BA be perpendicular to line OA at A
Then $B A=r \sin d \theta$
Let the area of Triangle $\mathrm{OAB}=\mathrm{dA}$
Then $\mathrm{dA}=(1 / 2)(\mathrm{r})(\mathrm{rsin} \mathrm{d} \theta)=\left(\mathrm{r}^{2} / 2\right) \sin \mathrm{d} \theta$
So, $\mathrm{dA} / \mathrm{d} \theta=\left(\mathrm{r}^{2} / 2\right)(\sin \mathrm{d} \theta) / \mathrm{d} \theta$
Limit $\mathrm{dA} / \mathrm{d} \theta \mathrm{d} \theta->0=$ limit $\mathrm{r}^{2} / 2_{\mathrm{d} \theta \rightarrow 0} \operatorname{limit}(\sin \mathrm{~d} \theta) / \mathrm{d} \theta \mathrm{d} \theta \rightarrow 0$
Limit $(\sin \mathrm{d} \theta) / \mathrm{d} \theta \mathrm{d} \theta->\mathbf{0} \quad=1$
So, $d A / d \theta=r^{2} / 2$
So, $d A=\left(r^{2} / 2\right) d \theta$
So from integral calculus, area of circle $=\int_{0}^{2 \pi} \mathbf{d A}=\int_{0}^{2 \pi}\left(\mathbf{r}^{2} / 2\right) \mathbf{d \theta}=\pi \mathbf{r}^{2}$

Derivation Of Area Of Circle, Sector Of A Circle And Circular Ring

Figure 113.2

Derivation of Area of Sector of Circle

Consider sector COA of circle

So ,from integral calculus, area of sector $\mathrm{COA}=\int_{\mathbf{0}}^{\boldsymbol{\theta}} \mathbf{d A}=\int_{\mathbf{0}}^{\boldsymbol{\theta}}\left(\mathbf{r}^{2} / \mathbf{2}\right) \mathbf{d \theta}=\left(\mathbf{r}^{2} / \mathbf{2}\right) \boldsymbol{\theta}$

Derivation of Area of Circular Ring

Consider figure 113.2 (b). Area of circular ring is area of outer circle with radius R minus area of inner circle with radius r .

Area of outer circle $=\pi \mathbf{R}^{2}$
Area of inner circle $=\pi \mathbf{r r}^{2}$
So, Area of circular ring $=\pi \mathbf{R}^{2}-\pi \mathbf{r}^{2}$

Area Of A Circle, Sector Of A Circle and Circular Ring

Figure 113.2

Alternate Derivation of Area of Circle

Consider first quadrant of circle (figure 113.2 (a)).
equation of circle with center at origin and radius r is $\mathbf{x}^{2}+\mathbf{y}^{2}=\mathbf{r}^{2}$
So, $\mathbf{x}=\sqrt{ }\left(\mathbf{r}^{2}-\mathbf{y}^{2}\right)$
Let $\mathrm{y}=\mathrm{r} \sin \theta$
Then $\mathrm{dy} / \mathrm{d} \theta=\mathrm{rcos} \theta$
So, dy = rcos $\theta \mathrm{d} \theta$
When $y=0, \sin \theta=0$. When $y=r, \sin \theta=\pi / 2$
So, $\mathbf{x}=\sqrt{ }\left(\mathbf{r}^{2}-\mathbf{y}^{2}\right)=\sqrt{ }\left(\mathbf{r}^{2}-\mathbf{r}^{2} \sin ^{2} \boldsymbol{\theta}\right)=\mathbf{r} \cos \theta$
So, area under curve in first quadrant $=\int_{0}^{\pi / 2}\left(r^{2} \cos ^{2} \theta\right) d \boldsymbol{\theta}=r^{2} \int_{0}^{\pi / 2}(\mathbf{1} / 2)(1+\cos 2 \theta) d \theta$

$$
\begin{aligned}
& =r^{2} / 2 \int_{0}^{\pi / 2}(1+\cos 2 \theta) d \theta=r^{2} / 2[\theta+(1 / 2) \sin 2 \theta]_{0}^{\pi / 2} \\
& =\pi r^{2} / 4
\end{aligned}
$$

So, area of circle $=4 \mathrm{x}$ area under curve in first quadrant $=\pi \mathbf{r}^{2}$

Derivation Of Area Of Circle, Sector Of A Circle And Circular Ring

