

Area Of A Circle, Sector Of A Circle and Circular Ring

Consider figure 113.2 (a)

Area of Circle = πr^2

Area of Sector Of A Circle = $(1/2)r^2\theta$

Derivation of Area of Circle

Line OA = radius of circle = r Line OB = radius of circle = r Let angle, < BOA = d θ radians Let line BA be perpendicular to line OA at A Then BA = r sin d θ Let the area of Triangle OAB = dA Then dA = ($\frac{1}{2}$)(r)(risin d θ) = ($r^{2}/2$) sin d θ So, dA/d θ = ($r^{2}/2$) (sin d θ)/d θ Limit dA/d θ d $_{\theta} \rightarrow 0$ = limit $r^{2}/2$ d $_{\theta} \rightarrow 0$ limit (sin d θ)/d θ d $_{\theta} \rightarrow 0$ Limit (sin d θ)/d θ d $_{\theta} \rightarrow 0$ = 1 So, dA/d θ = $r^{2}/2$ So, dA = ($r^{2}/2$) d θ So from integral calculus, area of circle = $\int_{0}^{2\pi} dA = \int_{0}^{2\pi} (r^{2}/2) d\theta = \pi r^{2}$ ------(1)

The string is S₁P₁A₁₃ - Empty Space -Containership - Area

Derivation Of Area Of Circle, Sector Of A Circle And Circular Ring

Area Of A Circle, Sector Of A Circle and Circular Ring

Derivation of Area of Sector of Circle

Consider sector COA of circle

So , from integral calculus, area of sector COA =
$$\int_0^{\theta} dA = \int_0^{\theta} (r^2/2) d\theta = (r^2/2)\theta$$
 ------(2)

Derivation of Area of Circular Ring

Consider figure 113.2 (b). Area of circular ring is area of outer circle with radius R minus area of inner circle with radius r.

Area of outer circle = $\pi \mathbf{R}^2$ Area of inner circle = $\pi \mathbf{r}^2$

So, Area of circular ring = $\pi \mathbf{R}^2 - \pi \mathbf{r}^2$

The string is S₁P₁A₁₃ - Empty Space -Containership - Area

Area Of A Circle, Sector Of A Circle and Circular Ring

Alternate Derivation of Area of Circle

Consider first quadrant of circle (figure 113.2 (a)). equation of circle with center at origin and radius r is $x^2 + y^2 = r^2$

So, $x = \sqrt{(r^2 - y^2)}$

Let $y = rsin\theta$ Then $dy/d\theta = rcos\theta$ So, $dy = rcos\theta d\theta$ When y = 0, $sin\theta = 0$. When y = r, $sin\theta = \pi/2$

So, $\mathbf{x} = \sqrt{(\mathbf{r}^2 - \mathbf{y}^2)} = \sqrt{(\mathbf{r}^2 - \mathbf{r}^2 \sin^2 \theta)} = \mathbf{r} \cos \theta$

So, area under curve in first quadrant = $\int_0^{\pi/2} (r^2 \cos^2 \theta) d\theta = r^2 \int_0^{\pi/2} (1/2)(1+\cos 2\theta) d\theta$

$$= r^{2}/2 \int_{0}^{\pi/2} (1 + \cos 2\theta) d\theta = r^{2}/2 [\theta + (1/2)\sin 2\theta]_{0}^{\pi/2}$$

= $\pi r^{2}/4$

So, area of circle = 4 x area under curve in first quadrant = πr^2

The string is S₁P₁A₁₃ - Empty Space -Containership - Area

Derivation Of Area Of Circle, Sector Of A Circle And Circular Ring