Derivation Of Area Of A Trapezoid, A Rectangle And A Triangle

Figure 113.1

Consider figure 113.1. ABFD is a trapezoid, ABCD is a rectangle and DCF is a triangle.
Area of ABFD = (1/2)(b-a)[ma $+\mathbf{c}+\mathrm{ma}+\mathrm{c}+\mathrm{h}]=(1 / 2)(b-\mathrm{a})[2 \mathrm{ma}+2 \mathrm{c}+\mathrm{h}]$
Area of $\mathrm{ABCD}=(\mathrm{b}-\mathrm{a})(\mathrm{ma}+\mathrm{c})$
Area of DCF = (1/2)(b-a)h

Derivation of Area of Trapezoid, ABFD

Equation of line DF: $\mathbf{y}=\mathbf{m x}+\mathbf{c}$
Area of ABFD = Area enclosed by line DF , line $\mathrm{x}=\mathrm{a}$, line $\mathrm{x}=\mathrm{b}$ and line $\mathrm{y}=0$.
So from integral calculus, area of $\mathrm{ABFD}=\int_{\mathbf{a}}^{\mathbf{b}} \mathbf{m x}+\mathbf{c} \mathbf{d x}$

$$
\begin{aligned}
& =\left[\left(\mathbf{m b}^{2} / 2\right)+\mathbf{c b}\right]-\left[\left(\mathrm{ma}^{2} / 2\right)+\mathbf{c a}\right] \\
& =\mathbf{m}\left(\mathbf{b}^{2}-\mathbf{a}^{2}\right) / 2+\mathbf{c}(\mathbf{b}-\mathbf{a}) \\
& =[(\mathbf{b}-\mathbf{a}) / 2][\mathbf{m}(\mathbf{a}+\mathbf{b})+2 \mathbf{c}], \text { where } \mathbf{m}=\mathbf{h} /(\mathbf{b}-\mathbf{a}) .
\end{aligned}
$$

$$
\text { So, } \begin{aligned}
{[(\mathbf{b}-\mathbf{a}) / 2][\mathbf{m}(\mathbf{a}+\mathbf{b})+2 \mathbf{c}] } & =[(\mathbf{b}-\mathbf{a}) / 2][(\mathbf{h}(\mathbf{a}+\mathbf{b}) /(\mathbf{b}-\mathbf{a})+2 \mathbf{c}] \\
& =(\mathbf{1} \mathbf{2})(\mathbf{b}-\mathbf{a})[2 \mathrm{ma}+2 \mathbf{c}+\mathbf{h}] \text { when } \mathbf{m}=\mathbf{h} /(\mathbf{b}-\mathbf{a}) .
\end{aligned}
$$

Area of ABFD $=(1 / 2)($ sum of lengths of parallel sides)(perpendicular distance between parallel sides)

Derivation Of Area Of A Trapezoid, A Rectangle And A Triangle

Figure 113.1

Derivation Of Area of Rectangle, ABCD

Equation of line DC $\mathbf{y}=\mathbf{m a}+\mathbf{c}$
Area of $\mathrm{ABCD}=$ Area enclosed by line DC , line $\mathrm{x}=\mathrm{a}$ and line $\mathrm{x}=\mathrm{b}$ and line $\mathrm{y}=0$.
So from integral calculus, area of $\mathrm{ABCD}=\int_{\mathbf{a}}^{\mathbf{b}} \mathbf{m a}+\mathbf{c} \mathbf{d x}$

$$
\begin{aligned}
& =(\mathbf{m a b}+\mathbf{c})-\left(\mathbf{m a}^{2}+\mathbf{c a}\right) \\
& =\mathbf{m}\left(\mathbf{a b}-\mathbf{a}^{2}\right)+\mathbf{c}(\mathbf{b}-\mathbf{a}) \\
& =\mathbf{m a}(\mathbf{b}-\mathbf{a})+\mathbf{c}(\mathbf{b}-\mathbf{a}) \\
& =(\mathbf{b}-\mathbf{a})(\mathbf{m a}+\mathbf{c}) .
\end{aligned}
$$

So, Area of rectangle $=$ (length of rectangle)(breadth of rectangle)

Derivation Of Area Of A Trapezoid, A Rectangle And A Triangle

Figure 113.1

Derivation of Area of Triangle DCF

Area of triangle DCF = Area of trapezoid ABFD - Area of rectangle ABCD.
So, from integral calculus area DCF $=\int_{\mathbf{a}}^{\mathbf{b}} \mathbf{m x}+\mathbf{c} \mathbf{d x}-\int_{\mathbf{a}}^{\mathbf{b}} \mathbf{m a}+\mathbf{c} \mathbf{d x}$

$$
\begin{aligned}
& =\left[\left(\mathrm{mb}^{2} / 2\right)+\mathbf{c b}\right]-\left[\left(\mathrm{ma}^{2} / 2\right)+\mathbf{c a}\right]-\left[(m a b+c b)-\left(\mathrm{ma}^{2}+\mathbf{c a}\right)\right] \\
& =\mathbf{m b}^{2} / \mathbf{2}-\mathbf{m a}^{2} / \mathbf{2}-\mathbf{m a b}+\mathbf{m a}^{\mathbf{2}} \\
& =((b-a) / 2) m[b+a-2 a] \\
& =((b-a) / 2) m(b-a)=((b-a) / 2) h \text {, where } m=h /(b-a) \text {. }
\end{aligned}
$$

So, area of triangle $=(1 / 2)$ (base of triangle)(height of triangle)

