Derivation Of Area Of An Ellipse

A standard ellipse is illustrated in figure 113.3. The origin of the y and x axes is at its center, the point where its major axis (x-axis) and its minor axis (y axis) intersect.

Equation of ellipse is $\mathbf{x}^{2} / \mathbf{a}^{2}+\mathbf{y}^{2} / \mathbf{b}^{2}=\mathbf{1}$
Area of ellipse = паb

Derivation of Area of an Ellipse

From equation of ellipse, $\mathbf{y}^{2}=\mathbf{b}^{2}\left(1-\mathbf{x}^{2} / \mathbf{a}^{2}\right)=\left(\mathbf{b}^{2} / \mathbf{a}^{2}\right)\left(\mathbf{a}^{2}-\mathbf{x}^{2}\right)$

$$
\text { So, } \mathbf{y}= \pm(\mathbf{b} / \mathbf{a}) \sqrt{ }\left(\mathbf{a}^{2}-\mathbf{x}^{2}\right)
$$

Curve of ellipse in first quadrant is $\mathbf{y}=(\mathbf{b} / \mathbf{a}) \sqrt{ }\left(\mathbf{a}^{2}-\mathbf{x}^{2}\right) \quad 0 \leq \mathrm{x} \leq \mathrm{a}$
So, area of first quadrant $=\int_{0}^{\mathbf{a}}(\mathbf{b} / \mathbf{a}) \sqrt{ }\left(\mathbf{a}^{2}-\mathbf{x}^{2}\right) \mathbf{d x}$ \qquad
integral evaluation by substitution
let $\mathbf{x}=\operatorname{asin} \boldsymbol{\theta}$. Then $\mathbf{d x}=\mathbf{a c o s} \boldsymbol{\theta} \mathbf{d} \boldsymbol{\theta}$
When $\mathrm{x}=0, \theta=0$. When $\mathrm{x}=\mathrm{a}, \theta=\pi / 2$

$$
\begin{aligned}
\text { So, equation (1) } & =\int_{0}^{\pi / 2}(\mathbf{b} / \mathbf{a}) \sqrt{ }\left(\mathbf{a}^{2}-\mathbf{a}^{2} \sin ^{2} \theta\right) \operatorname{acos} \theta d \boldsymbol{d} \theta \quad \text { Since } x=a \sin \theta \\
& =(\mathbf{b} / \mathbf{a}) \int_{0}^{\pi / 2} \sqrt{ }\left(\mathbf{a}^{2} \cos ^{2} \theta\right) \mathbf{a} \cos \theta d \theta
\end{aligned}
$$

Derivation Of Area Of An Ellipse

So, $\quad(b / a) \int_{0}^{\pi / 2} \sqrt{ }\left(a^{2} \cos ^{2} \theta\right) \operatorname{acos} \theta d \theta=a b \int_{0}^{\pi / 2} \cos ^{2} \theta d \theta$
$=\mathbf{a b} \int_{0}^{\pi / 2}(1 / 2)(1+\cos 2 \theta) d \theta$
$=(a b) / 2 \int_{0}^{\pi / 2}(1+\cos 2 \theta) d \theta$
$=(\mathrm{ab}) / 2[(\pi / 2+(1 / 2) \sin 2 \pi / 2)-(0+0)]$
$=(\pi / 4) \mathbf{a b}$
Since the ellipse is symmetric with respect to both its axes, its area is 4 times the area of its first quadrant.

$$
\text { So, area of ellipse = 4(} \pi / 4) \mathbf{a b}=\pi \mathbf{a b} .
$$

