/ is the division symbol

Definitions

Domain two types: *open domain* (D_0) – an open connected set of points; *bounded domain* (D_b) – all points of domain lie inside some square.

Region (R): *open region* = open domain; *closed region* = domain + all its boundary; *partially bounded* region = domain + some of its boundary.

Region $\mathbf{R}_x = [\mathbf{a}, \mathbf{b}, \mathbf{f}(\mathbf{x}), \mathbf{g}(\mathbf{x})]$ where $f(x), g(x) \in C$ in $a \le x \le b$ and $f(x) \le g(x)$ in $a \le x \le b$ implies \mathbf{R}_x is the region bounded by x = a, x = b, y = f(x), y = g(x).

(1) Describe the region:

 $R_y = [-4, 5, -\sqrt{(25 - y^2)}, 3y/4]$

Express it as the sum of several regions $R_{\boldsymbol{x}}$

Consider figure 9.1, Only the semi-circle ABCD is under consideration not the entire circle. $R_x = R_1 + R_2 + R_3$. $R_1 = [-5, -3, -\sqrt{(25 - x^2)}, \sqrt{(25 - x^2)}]$ $R_2 = [-3, 0, 4x/3, \sqrt{(25 - x^2)}]$

 $R_3 = [0, 15/4, 4x/3, 5]$

(2) Decompose the set of points (x, y) for which $2 \le x^2 + y^2 \le 4$ into two regions R_x . A point of the set may be a boundary point of both region R_x .

Ans (2) The region R of interest is the region shaded blue in figure 9.2.

 $R_x = R_1 + R_2$. R_1 is the region with the outer boundary BAD; R_2 is the region with outer boundary BCD.

 $\begin{aligned} &R_1 = [-2, \, 2, \, g(x), \, \sqrt{4 - x^2}] \\ &R_2 = \ [-2, \, 2, \, -\sqrt{(4 - x^2)}, \, -g(x)] \\ &\text{Where } g(x) = \ \sqrt{(2 - x^2)}, \, x^2 < 2; \, g(x) = 0, \, x^2 \ge 2. \end{aligned}$

Definitions

 Δ (delta): subdivision of a region R. Established by a set of closed curves $\{C_k\}_{1}^{n}$ which divides R into n subregions R_k of area ΔS_k , k = 1, 2, 3, ..., n.

 $\|\Delta\|$ (norm of a subdivision Δ): the maximum diameter of the subregions produced by the subdivision.

Double integral of f(x, y) over the region R:

$$\int \int_{R} f(x, y) \, dS = \lim_{\|\Delta\| \to 0} \sum_{k=1}^{n} f(\xi_{k}, \eta_{k}) \, \Delta S_{k} \, . \text{ Where } (\xi_{k}, \eta_{k}) \text{ is a point of } R_{k}.$$

Iterated Integrals: integrals of the form:

$$\int_{b}^{a} dx \int_{g(x)}^{h(x)} f(x, y) dy$$

Volume Of A solid:

$$V = \int_R \int f(x, y) \, dS$$

Fundamental Theorem Of Double Integral:

 $\begin{aligned} f(x, y) \in C \text{ in } R_x, \\ R_x &= [a, b, g(x), h(x)] \end{aligned}$

implies:
$$\int_{R} \int f(x, y) dS = \int_{b}^{a} dx \int_{g(x)}^{h(x)} f(x, y) dy$$
 -----(1)

(3) Evaluate:

$$\int_0^{\pi/4} \int_0^{\sec x} y^2 \, dy$$

Ans(3)
$$\int_0^{\pi/4} \frac{\pi}{4} = (1/3)[(1/2)(\sec x \tan x + \ln(\sec x + \tan x))]_0^{\pi/4} = (1/3)(1) = 1/3.$$

Change In Order Of Integration

If $f(x, y) \in C$ in a suitable region R, then:

$$\int_{a}^{b} dx \int_{a}^{x} f(x,y) dy = \int_{a}^{b} dy \int_{y}^{b} f(x,y) dx$$
 (Dirichlet's formula)

(4) Interchange the order of integration: $\int_{-1}^{1} \int_{-1}^{1} dx$

 $\int_0^1 dx \, \int_{x^2}^1 f(x,y) \, dy$

Consider figure 9.3, $R_y = [0, 1, 0, \sqrt{y}]$, so by Dirichlet's formula: $\int_0^1 dx \int_{x^2}^1 f(x,y) dy = \int_0^1 dy \int_0^{\sqrt{y}} f(x,y) dx$

Triple Integrals: integrals of functions of three variables over regions of three dimensional space. Fundamental evaluation similar to fundamental theorem of double integrals (1)

$$\int \int \int_{V_{xy}} f(x, y, z) \, dV = \int \int_{R} dS \int_{g(x,y)}^{h(x,y)} f(x, y, z) \, dz$$
-----(2)

Peter Oye Simate Sagay Simate was my mother Sagay was my father

Ans(4)