Advanced Calculus - Multiple Integrals

/ is the division symbol

Definitions

Domain two types: open domain (D_{o}) - an open connected set of points; bounded domain $\left(\mathrm{D}_{\mathrm{b}}\right)$ - all points of domain lie inside some square.

Region (R): open region = open domain; closed region = domain + all its boundary; partially bounded region $=$ domain + some of its boundary.

Region $\mathbf{R}_{\mathbf{x}}=$ [a, $\mathbf{b}, \mathbf{f}(\mathbf{x}), \mathbf{g}(\mathbf{x})$] where $\mathrm{f}(\mathrm{x}), \mathrm{g}(\mathrm{x}) \in \mathrm{C}$ in $\mathrm{a} \leq \mathrm{x} \leq \mathrm{b}$ and $\mathrm{f}(\mathrm{x})<\mathrm{g}(\mathrm{x})$ in $\mathrm{a} \leq \mathrm{x} \leq \mathrm{b}$ implies R_{x} is the region bounded by $x=a, x=b, y=f(x), y=g(x)$.
(1) Describe the region:

$$
\mathrm{R}_{\mathrm{y}}=\left[-4,5,-\sqrt{ }\left(25-\mathrm{y}^{2}\right), 3 \mathrm{y} / 4\right]
$$

Express it as the sum of several regions R_{x}

Ans (1)

Consider figure 9.1, Only the semi-circle ABCD is under consideration not the entire circle.
$\mathrm{R}_{\mathrm{x}}=\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}$.
$\mathrm{R}_{1}=\left[-5,-3,-\sqrt{ }\left(25-\mathrm{x}^{2}\right), \sqrt{ }\left(25-\mathrm{x}^{2}\right)\right]$
$\mathrm{R}_{2}=\left[-3,0,4 \mathrm{x} / 3, \sqrt{ }\left(25-\mathrm{x}^{2}\right)\right]$
$\mathrm{R}_{3}=[0,15 / 4,4 \mathrm{x} / 3,5]$

Advanced Calculus - Multiple Integrals

(2) Decompose the set of points (x, y) for which $2 \leq x^{2}+y^{2} \leq 4$ into two regions R_{x}. A point of the set may be a boundary point of both region R_{x}.

Ans (2) The region R of interest is the region shaded blue in figure 9.2.

Figure 9.2
$R_{x}=R_{1}+R_{2} . R_{1}$ is the region with the outer boundary BAD; R_{2} is the region with outer boundary BCD.
$\mathrm{R}_{1}=\left[-2,2, \mathrm{~g}(\mathrm{x}), \sqrt{ } 4-\mathrm{x}^{2}\right]$
$R_{2}=\left[-2,2,-\sqrt{ }\left(4-x^{2}\right),-g(x)\right]$
Where $g(x)=\sqrt{ }\left(2-x^{2}\right), x^{2}<2 ; g(x)=0, x^{2} \geq 2$.

Definitions

$\boldsymbol{\Delta}$ (delta): subdivision of a region R. Established by a set of closed curves $\left\{\mathrm{C}_{\mathrm{k}}\right\}^{\mathrm{n}}{ }_{1}$ which divides R into n subregions R_{k} of area $\Delta S_{k}, k=1,2,3, \ldots, n$.
$\|\Delta\|$ (norm of a subdivision Δ): the maximum diameter of the subregions produced by the subdivision.
Double integral of $f(x, y)$ over the region R :

$$
\iint_{\mathrm{R}} \mathrm{f}(\mathrm{x}, \mathrm{y}) \mathrm{dS}=\lim _{\|\Delta\| \rightarrow 0 \mathrm{k}=1}^{\mathrm{n}} \mathrm{~m}_{\|}\left(\xi_{\mathrm{k}}, \eta_{\mathrm{k}}\right) \Delta \mathrm{S}_{\mathrm{k}} \text {. Where }\left(\xi_{\mathrm{k}}, \eta_{\mathrm{k}}\right) \text { is a point of } \mathrm{R}_{\mathrm{k}} \text {. }
$$

Advanced Calculus - Multiple Integrals

Iterated Integrals: integrals of the form:

$$
\int_{b}^{a} d x \int_{g(x)}^{h(x)} f(x, y) d y
$$

Volume Of A solid:
$V=\int_{R} \int f(x, y) d S$

Fundamental Theorem Of Double Integral:

$f(x, y) € C$ in R_{x},
$\mathrm{R}_{\mathrm{x}}=[\mathrm{a}, \mathrm{b}, \mathrm{g}(\mathrm{x}), \mathrm{h}(\mathrm{x})]$
implies: $\int_{R} \int f(x, y) d S=\int_{b}^{a} d x \int_{g(x)}^{h(x)} f(x, y) d y$
(3) Evaluate:

$$
\int_{0}^{\pi / 4} \mathrm{dx} \int_{0}^{\sec \mathrm{x}} \mathrm{y}^{2} \mathrm{dy}
$$

$$
\operatorname{Ans}(3) \int_{0}^{\pi / 4} 1 / 3 \sec ^{3} x d x=(1 / 3)[(1 / 2)(\sec x \tan x+\ln (\sec x+\tan x))]_{0}^{\pi / 4}=(1 / 3)(1)=1 / 3
$$

Change In Order Of Integration

If $f(x, y) \in C$ in a suitable region R, then:

$$
\begin{equation*}
\int_{a}^{b} d x \int_{a}^{x} f(x, y) d y=\int_{a}^{b} d y \int_{y}^{b} f(x, y) d x \tag{Dirichlet’sformula}
\end{equation*}
$$

(4) Interchange the order of integration:

$$
\int_{0}^{1} d x \int_{x^{2}}^{1} f(x, y) d y
$$

Advanced Calculus - Multiple Integrals

Ans(4)

Figure 9.3
Consider figure 9.3, $\mathrm{R}_{\mathrm{y}}=[0,1,0, \sqrt{ } \mathrm{y}]$, so by Dirichlet's formula:

$$
\int_{0}^{1} d x \int_{x^{2}}^{1} f(x, y) d y=\int_{0}^{1} d y \int_{0}^{\sqrt{l} y} f(x, y) d x
$$

Triple Integrals: integrals of functions of three variables over regions of three dimensional space. Fundamental evaluation similar to fundamental theorem of double integrals (1)

$$
\begin{equation*}
\iiint \int_{V_{x y}}^{f(x, y, z) d V=\iint_{R} d S \int_{g(x, y)}^{h(x, y)} f(x, y, z) d z . . . ~} \tag{2}
\end{equation*}
$$

Peter Oye Simate Sagay
Simate was my mother
Sagay was my father

