Derivation Of Volume Of A Cone

Derivation Of Volume Of A Cone

Consider the cone illustrated in figure 113.5. Volume of cone = $(1/3)\pi r^2h$

Derivation of Volume Of A Cone

Area of smaller circle in cone = πx^2 Volume of smaller circle in cone = $\pi x^2 dy$

So, volume of cone = $\int_{0}^{h} \pi x^{2} dy$ $= \int_{0}^{h} \pi (y/m)^{2} dy$ $= \pi (1/m^{2}) \int_{0}^{h} y^{2} dy$ $= (1/3)\pi (1/m^{2})h^{3}$ $= (1/3)\pi r^{2}h \qquad \text{since } m = h/r$

The string is $S_1P_1A_{14}$ - Empty Space – Containership - Volume

Derivation Of Volume Of A Cone