Derivation Of Volume Of A Cone

Derivation Of Volume Of A Cone

Figure 113.5

Consider the cone illustrated in figure 113.5.
Volume of cone $=(\mathbf{1} / \mathbf{3}) \pi \mathbf{r}^{2} \mathbf{h}$

Derivation of Volume Of A Cone

Area of smaller circle in cone $=\pi \mathbf{x}^{2}$
Volume of smaller circle in cone $=\pi \mathbf{x}^{2} \mathbf{d y}$
So, volume of cone $=\int_{0}^{h} \pi x^{2} d y-$

$$
\begin{aligned}
& =\int_{0}^{h} \pi(y / m)^{2} d y \\
& =\pi\left(1 / \mathrm{m}^{2}\right) \int_{0}^{h} y^{2} d y \\
& =(1 / 3) \pi\left(1 / \mathrm{m}^{2}\right) h^{3} \\
& =(1 / 3) \pi r^{2} h \quad \text { since } \mathrm{m}=\mathrm{h} / \mathrm{r}
\end{aligned}
$$

Derivation Of Volume Of A Cone

