Derivation Of Volume Of A Cylinder

Derivation Of Volume Of A Cylinder

Figure 113.6

Consider the cylinder illustrated in figure 113.6.
Volume of cylinder $=\pi \mathbf{r}^{2} \mathbf{h}$

Derivation Of Volume Of A Cylinder

Area of cross-section of cylinder $=\pi \mathbf{r r}^{2}$
Volume of cross-sectional area with very small height, $\mathrm{dh}=\pi \mathbf{r}^{2} \mathbf{d h}$
So, volume of cylinder $=\int_{0}^{h} \pi r^{2} \mathbf{d h}$
$=\pi r^{2} h$

The string is $S_{1} P_{1} A_{14}$ - Empty Space - Containership - Volume

