Derivation Of Volume Of A Cylinder

Derivation Of Volume Of A Cylinder

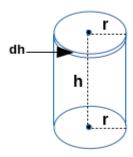


Figure 113.6

Consider the cylinder illustrated in figure 113.6. Volume of cylinder = $\pi \mathbf{r}^2 \mathbf{h}$

Derivation Of Volume Of A Cylinder

Area of cross-section of cylinder = πr^2 Volume of cross-sectional area with very small height, dh = $\pi r^2 dh$

So, volume of cylinder =
$$\int_0^h \pi r^2 dh$$
 = $\pi r^2 h$

The string is $S_1P_1A_{14}$ - Empty Space – Containership - Volume