Derivation Of Volume Of A Frustum

Volume Of A Frustum
Figure 114.3

(i) Large cone

$$
M N=h_{1} \quad N O=h \quad N Q=a \quad O P=b
$$

(ii) Frustum

(iii) Small cone

When a horizontal plane slices through the cone in figure 114.3(i) at Q , the shape below the plane is a frustum and the shape above the plane is a smaller cone.
Volume of frustum $=(\mathbf{1} / 3) \pi h\left(\mathbf{a}^{2}+\mathbf{a b}+\mathbf{b}^{2}\right)$

Derivation Of Volume Of A Frustum

Volume of frustum = volume of large cone - volume of small cone

$$
\begin{equation*}
=(1 / 3) \pi\left(b^{2}\right)\left(h_{1}+h\right)-(1 / 3) \pi\left(\mathbf{a}^{2}\right)\left(h_{1}\right) \tag{1}
\end{equation*}
$$

Triangle MNQ is similar to Triangle MOP. N, and O are centers of circles Q and P respectively.

$$
\begin{align*}
\text { So, } \mathbf{h}_{1} /\left(\mathbf{h}_{1}+\mathbf{h}\right) & =\mathbf{a} / \mathbf{b} \tag{2}\\
\text { So, } \mathbf{h}_{1} & =\mathbf{h a} /(\mathbf{b}-\mathbf{a}) \tag{3}
\end{align*}
$$

Replacing ($\left(\mathbf{h}_{\mathbf{1}}+\mathbf{h}\right)$ in equation (1) with $\left(\mathbf{h}_{\mathbf{1}} \mathbf{b}\right) / \mathbf{a}$ we have:
$(1 / 3) \pi\left(b^{2}\right)\left(h_{1}+h\right)-(1 / 3) \pi\left(a^{2}\right)\left(h_{1}\right)=(1 / 3) \pi\left[b^{2}\left(h_{1} b\right) / a-\left(a^{2}\right)\left(h_{1}\right)\right]$

$$
=(1 / 3) \pi\left[\left(h_{1} / a\right)\left(b^{3}-\mathbf{a}^{3}\right)\right]
$$

But $\mathbf{h}_{1} / \mathbf{a}=\mathbf{h} /(\mathbf{b}-\mathbf{a})$ from equation (3)
So, $(1 / 3) \pi\left[\left(h_{1} / a\right)\left(b^{3}-a^{3}\right)\right]=(1 / 3) \pi h\left[\left(b^{3}-a^{3}\right) /(b-a)\right]=(1 / 3) \pi h\left(a^{2}+a b+b^{2}\right)$
So, volume of frustum $=(\mathbf{1} / \mathbf{3}) \pi \mathbf{h}\left(\mathbf{a}^{2}+\mathbf{a b}+\mathbf{b}^{2}\right)$

The string is $\mathrm{S}_{1} \mathrm{P}_{1} \mathrm{~A}_{14}$ - Empty Space - Containership - Volume

Derivation Of Volume Of A Frustum

