## Derivation Of Volume Of A Paraboloid

## Volume Of A Paraboloid



Figure 114.5

When the region enclosed by the curve  $y = x^2$ , y = h and x = 0 (figure 114.5a) is revolved about the y axis, the solid obtained is the paraboloid in 114.5b.

## **Derivation Of Volume Of Paraboloid**

Area of cross-section =  $\pi x^2 = \pi (\sqrt{y})^2 = \pi y$ Volume of cross-sectional area =  $\pi y dy$ So, volume of paraboloid =  $\int_0^h \pi y \ dy$ -----(1) =  $\pi (h^2)/2$ .

The string is  $S_1P_1A_{14}$  - Empty Space - Containership - Volume