Derivation Of Volume Of A Paraboloid

Figure 114.5

When the region enclosed by the curve $y=x^{2}, y=h$ and $x=0$ (figure 114.5a) is revolved about the y axis, the solid obtained is the paraboloid in 114.5 b .

Derivation Of Volume Of Paraboloid

Area of cross-section $=\pi \mathbf{x}^{2}=\pi(\sqrt{ } \mathbf{y})^{2}=\pi \mathbf{y}$
Volume of cross-sectional area $=$ mydy
So, volume of paraboloid $=\int_{0}^{\mathbf{h}} \pi \mathbf{x} \mathbf{d y}$

$$
=\pi\left(h^{2}\right) / 2 .
$$

