Derivation Of Volume Of A Sphere

Volume Of A Sphere

Figure 113.9

The sphere illustrated in figure 113.9 is generated by revolving the circle with center at the origin and radius r about the y axis. Volume of sphere = $(4/3)\pi r^3$

Derivation Of Volume Of A Sphere

Area of circular cross-section $= \pi \mathbf{x}^2$. Since radius of cross-section is x Volume of cross-sectional area $= \pi(\mathbf{x}^2)\mathbf{dy}$ Volume of sphere is twice volume of hemisphere So, volume of sphere $= 2\int_0^r \pi(\mathbf{x}^2) \, \mathbf{dy}$ ------(1) $= 2\pi \int_0^r (\mathbf{r}^2 - \mathbf{y}^2) \mathbf{dy}$ $= 2\pi (\mathbf{r}^3 - \mathbf{r}^3/3)$ $= 2\pi (3\mathbf{r}^3 - \mathbf{r}^3)/3$ $= (\mathbf{4}/3)\pi \mathbf{r}^3$.

The string is S₁P₁A₁₄ - Empty Space – Containership - Volume