Derivation Of Volume Of A Torus

Volume Of A Torus

Figure 114.6

The torus in figure 114.6b is obtained by revolving the circle $(\mathbf{x}-\mathbf{R})^{2}+\mathbf{y}^{\mathbf{2}}=\mathbf{r}^{2}$ in figure 114.6a about the y axis.

Derivation Of Volume Of A Torus

Equation of circle with center at $(R, 0)$ and radius r is $(\mathbf{x}-\mathbf{R})^{2}+\mathbf{y}^{2}=\mathbf{r}^{2}$ So at right half of circle (114.6a), $\quad \mathbf{x}=\mathbf{R}+\sqrt{ }\left(\mathbf{r}^{2}-\mathbf{y}^{2}\right)=\mathbf{f}(\mathbf{y})$ So at left half of circle (114.6a), $\quad \mathbf{x}=\mathbf{R}-\sqrt{ }\left(\mathbf{r}^{2}-\mathbf{y}^{2}\right)=\mathbf{g}(\mathbf{y})$

$$
\begin{aligned}
& \text { So, volume of torus }=\int_{-\mathbf{r}}^{\mathbf{r}} \pi\left[(\mathbf{f}(\mathbf{y}))^{2}-(\mathbf{g}(\mathbf{y}))^{2}\right] \mathbf{d y} \\
& =2 \pi \int_{0}^{r} 4 R \sqrt{ }\left(r^{2}-y^{2}\right) d y \\
& =8 \pi R \int_{0}^{r} \sqrt{ }\left(r^{2}-y^{2}\right) d y \\
& =8 \pi \mathbf{R}\left(\pi \mathbf{r}^{2} / 4\right) \text { since } \int_{0}^{\mathbf{r}} \sqrt{ }\left(\mathbf{r}^{2}-\mathbf{y}^{2}\right) \mathbf{d y}=\text { area of a quarter of a circle }
\end{aligned}
$$

So, volume of torus $=2 \boldsymbol{\pi}^{2} \mathbf{r}^{2} \mathbf{R}$

The string is $\mathrm{S}_{1} \mathrm{P}_{1} \mathrm{~A}_{14}$ - Empty Space - Containership - Volume

