Volume Obtained By Revolving the curve $\mathrm{y}=\mathrm{x}^{2}$ about the X Axis

Figure 113.7

The curve $\mathbf{y}=\mathbf{x}^{2}$ in figure 113.7 (a) is revolved about the x axis within the limits $\mathrm{x}=0$ and $\mathrm{x}=1$. The funnel shape in figure 113.7 (b) is the result of the revolution. We are interested in its volume.

Derivation Of Volume Of Revolution

Area of circular cross-section (solid blue in (b)) $=\pi\left(x^{2}\right)^{2}$. Since radius of cross-section is x^{2} Volume of cross-sectional area $=\pi\left(\mathbf{x}^{2}\right)^{2} \mathbf{d x}$

$$
\begin{aligned}
\text { So, volume of revolution } & =\int_{0}^{1} \pi\left(x^{2}\right)^{2} d \mathbf{x} \\
& =\pi \int_{0}^{1} \mathbf{x}^{4} \mathbf{d x} \\
& =\pi / 5
\end{aligned}
$$

