Boundary Value Problems As Sturm-Liouville Problems

The following is a Sturm-Liouville problem:

$$
\begin{align*}
& \text { ODE } \quad \mathbf{X \prime}(\mathbf{x})+\lambda \mathbf{X}(\mathbf{x})=\mathbf{0} \quad 0<\mathrm{x}<1 \tag{1}\\
& \mathbf{X}(0)=0 \tag{2}
\end{align*}
$$

BCs

$$
\begin{equation*}
X^{\prime}(1)=0 \tag{3}
\end{equation*}
$$

where ' implies first derivative and " implies second derivative.
(a) What is a Sturm-Liouville problem?
(b) What are the eigenvalues (also called characteristic values) and eigenfunctions (also called characteristic functions) of the given Sturm-Louiville problem?

Solution

(a) A Sturm-Liouville problem is a boundary-value problem and its general form is as follows:

ODE $\quad\left[\mathbf{p}(\mathbf{x}) \mathbf{y}^{\prime}\right]^{\prime}-\mathbf{q}(\mathbf{x}) \mathbf{y}+\boldsymbol{\lambda}_{\mathbf{r}}(\mathbf{x}) \mathbf{y}=\mathbf{0} \quad 0<\mathrm{x}<1$

$$
\begin{equation*}
\mathbf{a}_{1} \mathbf{y}(0)+\mathbf{b}_{1} y^{\prime}(0)=0 \tag{4}
\end{equation*}
$$

BCs

$$
\begin{equation*}
a_{2} y(1)+b_{2} y^{\prime}(1)=0 \tag{5}
\end{equation*}
$$

Sturm and Liouville showed that the ODE in $\mathbf{X (x)}$ and its associated BCs (derived when the separation of variables method is used to solve PDEs with linear homogeneous boundary conditions) will always be some particular Sturm-Liouville problem.
(b) The general form of the solution of equation (1) is as follows:

$$
\begin{equation*}
X(x)=A \sin \left(\lambda^{1 / 2} x\right)+B \cos \left(\lambda^{1 / 2} x\right) \tag{7}
\end{equation*}
$$

Equation (7) must now satisfy the BCs given in equations (2) and (3).

Boundary Value Problems As Sturm-Liouville Problems

So,

$$
X(0)=A \sin \left(\lambda^{1 / 2} 0\right)+B \cos \left(\lambda^{1 / 2} 0\right)=0=>B=0
$$

and

$$
X^{\prime}(1)=A \cos \left(\lambda^{1 / 2} 1\right)-B \sin \left(\lambda^{1 / 2} 1\right)=0 \quad \Rightarrow \cos \left(\lambda^{1 / 2}\right)=0
$$

Therefore,

$$
\lambda_{\mathrm{n}}^{1 / 2}=\mathrm{n} \pi / 2
$$

$$
\mathrm{n}=1,3,5, \ldots
$$

So

$$
\lambda_{\mathrm{n}}=(\mathrm{n} \pi / 2)^{2}
$$

$$
\mathrm{n}=1,3,5, \ldots
$$

So, eigenvalues $=\lambda_{\mathrm{n}}=(\mathrm{n} \pi / 2)^{2}$ $n=1,3,5, \ldots$
and \quad eigenfunctions $=X_{n}(x)=\sin (n \pi x / 2)$ $\mathrm{n}=1,3,5, \ldots$

The String: $\mathrm{S}_{7} \mathbf{P}_{2} \mathrm{~A}_{21}$ (Identity - Physical Properties).
The Pj Problem of interest is of type identity. All problems of mathematical modeling are identity problems because the problems seek the mathematical structure of the physical problem being modeled.

