/ is the division symbol

An ordered set of objects is called a **sequence**. A sequence can also be defined as a function whose domain is the set of positive integers. The sequence is **infinite** if for any n^{th} term of the sequence there always exists a $(n+1)^{th}$ term.

(1) Consider the sequence $a_n = n/(2n + 1)$. What is the 7^{th} term of the sequence? Does the sequence converge to a limit? If so what is that limit?

Ans (1)
$$7^{th}$$
 term = f(7) = 7/(14 + 1) = 7/15
lim n/(2n + 1) = lim 1/(2 + 1/n) = ½. Sequence converges and its limit is ½. $n \to \infty$ $n \to \infty$

(2) Is the infinite sequence $\lim_{n \to \infty} 1/5^n$ convergent?

```
Ans (2) \lim_{n \to \infty} 1/5^n = \lim_{n \to \infty} (1/5)^n = 0. Sequence is convergent.
```

This sequence belongs to the group of sequences called **geometric progression** (G.P.) with common ratio r, where $r = (n + 1)^{th}$ term/ n^{th} term and |r| < 1.

The sum of the terms of a sequence is called a **series**. The sum of an infinite sequence is called an **infinite series**. Consider the series:

Lim $S_n = S$ implies S is the sum of the infinite series. The series is said to converge to S. $n \to \infty$

(3) What is the sum of $\lim_{n \to \infty} 1/5^n$?

Ans (3) In general, sum of first n terms of a G. P., $S_n = a(1 - r^n)/(1 - r)$. Lim $S_n = a/(1 - r) = 1/4$. $n \to \infty$

 ∞

Power Series are of the form: Σ a_nx^n . Where x is a variable and the coefficients of x are constants. n=0

 ∞

A power series of the form: $\sum a_n(x-a)^n$ is a power series centered at a or about a. n=0

A power series in x implies a function f(x) over the domain of values of x for which the series converges. This domain is called the interval of convergence.

The **radius of convergence** of a power series about a is:

- (a) 0 if the series converges only when x = a
- (b) ∞ if the series converges for all x
- (c) A positive number R such that the series converges if |x a| < R and diverges if |x a| > R.

The **interval of convergence** for a radius of convergence = 0 is a.

The **interval of convergence** for a radius of convergence = ∞ is all real numbers (- ∞ , ∞)

The **interval of convergence** for a radius of convergence = R is either [a-R, a+R], or [a-R, a+R), or [a-R, a+R).

Convergence Tests

 ∞

 α

D'Alembert's Ratio Test: $u_k > 0$; Lim $u_{k+1}/u_k < 1$ implies Σ u_k converges.

$$k \rightarrow \infty$$
 $k=0$

∞ ∞

Comparison Test: $0 \le u_k \le v_k$; Σv_k converges implies Σu_k converges.

k=0 k=0

Leibniz's Alternating Series Test: $v_k \downarrow$; $v_k \ge 0$; $\lim v_k = 0$ implies $\sum (-1)^k v_k$ converges. $k \to \infty$ k = 0

n

Absolute Convergence Test: Σ u_k converges absolutely if and only if $\Sigma |u_k|$ converges

k=1 k=1

Conditional Convergence Test: $\sum u_k$ converges conditionally if and only if $\sum |u_k|$ diverges. k=1

Cauchy's Test: $u_k > 0$, k = 1,2,...; Lim $(u_k)^{1/k} < 1$ implies $\sum_{k \to \infty} u_k$ converges $k \to \infty$

MaClaurin's Test: $f(x) \ge 0$; $\in C$, \downarrow (means f(x) is nonincreasing)

 $\lim_{R\to\infty} \int_{1}^{R} f(x)dx = A$; implies $\sum_{k=1}^{\infty} f(k)$ converges.

(4) Given the power series $\sum_{n=0}^{\infty} x^n/(n+2)$

Determine its radius of convergence if it converges and the interval of convergence.

Ans (4) By the ratio test, $\lim_{n \to \infty} |(x^{n+1}/(n+3))((n+2)/x^n)| = |x| \lim_{n \to \infty} (n+2)/(n+3) = |x|$

So, $|x| \le 1$ for convergence. So radius of convergence = 1

If x =1, series becomes Σ 1/(n+2). This series diverges by the comparison test with the harmonic series.

n=0 ∞

The harmonic series is: $\Sigma 1/n$

n=0 ∞

If x = -1, series becomes Σ $(-1)^n/(n+2)$. This series converges by the alternating series test.

n=0

So, interval of convergence = [-1,1).

 ∞

(5) Given the power series $\sum x^n/n!$

n=0

Determine the radius of convergence if it converges and the interval of convergence.

Ans (5) By the ratio test, $\lim |(x^{n+1}/(n+1)!)/(x^n/n!)| = |x| \lim 1/(n+1) = 0 < 1$ for all x.

 $n \to \infty$ $n \to \infty$

So, radius of convergence = ∞ ; Interval of convergence = $(-\infty, \infty)$.

 \propto

(6) Given the power series Σ n!(2x-1)ⁿ

n=(

Determine its radius of convergence if it converges and the interval of convergence.

Ans (6) By the ratio test, $\lim |[(n+1)!(2x-1)^{n+1}]/[n!(2x-1)^n]| = \lim |(n+1)(2x-1)| \to \infty$ for all $x \neq \frac{1}{2}$.

 $n \to \infty$ $n \to \infty$

So, since series diverges for all $x \ne \frac{1}{2}$, radius of convergence = 0 and interval of convergence = $\frac{1}{2}$.

Representing functions by infinite series: instances exist whereby the best way to approximate a function is to represent it with an infinite series. Three infinite series are commonly used to represent functions when the functions meet certain criteria. These series are the **Maclaurin series**, the **Taylor series** and the **Binomial series**.

Taylor Series: if a Taylor series centered at a and of n terms represent f(x), then the $(n+1)^{th}$ derivative of f(x) at a must exist. That is, $f(x) \in C^{n+1}$. The representation is expressed as:

$$f(x) = \sum_{n=0}^{\infty} (f^{n}(a) / n!)(x-a)^{n}.$$

The **Maclaurin series** is the Taylor series centered at 0. So representation is expressed as:

$$f(x) = \sum_{n=0}^{\infty} (f^n(0) / n!)x^n.$$

(7) Represent $f(x) = e^x$ by its Maclaurin series.

Ans (7) $df(x)/dx = e^x$ for all n derivatives. So, $f^n(0) = 1$ for all n. So, Maclaurin series for $f(x) = e^x$ is:

So,
$$f(x) = \sum_{n=0}^{\infty} (f^n(0) / n!)x^n = 1 + x + x^2/2! ... x^n/n! ..., all x$$

The Maclaurin series for some other commonly used functions are:

$$\sin x = x - x^3/3! + x^5/5! + ... + (-1)^{n+1}[x^{2n-1}/(2n-1)!] + ..., all x$$

$$\cos x = 1 - x^2/2! + x^4/4! - \dots + (-1)^{n+1}[x^{2n-2}/(2n-2)!] + \dots$$
, all x

tan
$$x = x + x^3/3 + 2x^5/15 + 17x^7/315 + ...$$
, for $x^2 < \pi^2/4$

$$\ln (1 + x) = x - x^2/2 + x^3/3 - \dots + (-1)^{n+1}(x^n/n) + \dots$$
, for $-1 < x \le 1$

Binomial series:
$$f(x) = (1 + x)^k = \sum_{n=0}^{\infty} [k!/((k-n)!n!)]x^n$$

Peter Oye Simate Sagay Simate was my mother Sagay was my father