Home

MarketPlace

The TECTechnics Classroom

Phasor Form Of A Periodic Signal


Overview

TECians Login

Strings (SiPjAjk) = S7P2A21     Base Sequence = 12735     String Sequence = 12735 - 2 - 21

Expressions Of Pj Problems
Phasor Form Of A Periodic Signal
Math

Pj Problems - Overview
Celestial Stars
The Number Line
Geometries
7 Spaces Of Interest - Overview
Triadic Unit Mesh
Creation
The Atom
Survival
Energy
Light
Heat
Sound
Music
Language
Stories
Work
States Of Matter
Buoyancy
Nuclear Reactions
Molecular Shapes
Electron Configurations
Chemical Bonds
Energy Conversion
Chemical Reactions
Electromagnetism
Continuity
Growth
Human-cells
Proteins
Nucleic Acids
COHN - Natures Engineering Of The Human Body
The Human-Body Systems
Vision
Walking
Behaviors
Sensors Sensings
Beauty
Faith, Love, Charity
Photosynthesis
Weather
Systems
Algorithms
Tools
Networks
Search
Differential Calculus
Antiderivative
Integral Calculus
Economies
Inflation
Markets
Money Supply
Painting

Phasor Form Of A Periodic Signal
Figure 8.25 shows the sum Vs(t) of the sinusoidal voltage signals V1(t) and V2(t).
Determine the phasor form of Vs given the following information:
V1(t): amplitude = 15; frequency = 377; phase angle = 45o.
V1(t): amplitude = 15; frequency = 377; phase angle = 30o.

The string:
S7P2A21 (Identity - Physical Properties).
The math:
Phasor Form Of A Periodic Signal
Pj Problem of interest is of type identity.
The expression for a generalized sinusoid is:
Acos(ωt + θ) -------(1)
Where A is the amplitude; ω is the frequency; and θ is the phase angle.
We can relate the general form of the sinusoid to Euler's Identity (Leonhard Euler (1707 - 1783)).
Basically, Euler's identity defines the complex exponential, e as a point in the complex plane, which has both real and imaginary components as follows:

e = cos θ + jsin θ -------(2)
Where cos θ is the real component and jsin θ is the imaginary component.
So, Ae = A(cos θ + jsin θ)
Now, Aej(wt + θ) = Acos(wt + θ) + jAsin(wt + θ)----(3)
So, we see that the real component of equation (3) is the expression for a generalized sinusoid.
By definition, the complex phasor notation for Acos(ωt + θ) is:

Ae = A<θ
The complex phasor notation for Acos(ωt + θ) is simply a mathematical definition that resulted from the need for a simple method for analyzing sinusoidal signals. It is important to note that the complex form ejwt is implicit in the simplification.

Now in time-domain form:
V1(t) = 15cos(377t + π/4)
V2(t) = 15cos(377t + π/6)

In phasor form:
V1(jω) = 15<π/4
V2(jω) = 15<π/6
Convert phasor voltages from polar to rectangular form:
V1(jω) = 15(cos45) + j15(sin45) = 10.61 + 10.61j
V2(jω) = 15(cos30) + j15(sin30) = 12.99 + 7.5 j
So, Vs(jω) = V1(jω) + V2(jω) = 23.6 + 18.11j
So, A2 = [(23.6)2 + (18.11)2]
So, A = 29.75.
So, sin θ = 18.11/29.75 = 0.609
So, θ = 37.52o.
So, Vs(jω) 29.75<37.52.
So, Vs(t) = 29.75cos(377t + 37.52 π/180)

The point . is a mathematical abstraction. It has negligible size and a great sense of position. Consequently, it is front and center in abstract existential reasoning.
Single Variable Functions
Conics
Ordinary Differential Equations (ODEs)
Vector Spaces
Real Numbers
Separation Of Variables As Solution Method For Homogeneous Heat Flow Equation
Newton And Fourier Cooling Laws Applied To Heat Flow Boundary Conditions
Fourier Series
Derivation Of Heat Equation For A One-Dimensional Heat Flow


The Universe is composed of matter and radiant energy. Matter is any kind of mass-energy that moves with velocities less than the velocity of light. Radiant energy is any kind of mass-energy that moves with the velocity of light.
Periodic Table
Composition And Structure Of Matter
How Matter Gets Composed
How Matter Gets Composed (2)
Molecular Structure Of Matter
Molecular Shapes: Bond Length, Bond Angle
Molecular Shapes: Valence Shell Electron Pair Repulsion
Molecular Shapes: Orbital Hybridization
Molecular Shapes: Sigma Bonds Pi Bonds
Molecular Shapes: Non ABn Molecules
Molecular Orbital Theory
More Pj Problem Strings

What is Time?
St Augustine On Time
Bergson On Time
Heidegger On Time
Kant On Time
Sagay On Time
What is Space?
Newton On Space
Space Governance
Leaders
Imperfect Leaders
Essence Of Mathematics
Toolness Of Mathematics
The Number Line
Variables
Equations
Functions
The Windflower Saga
Who Am I?
Primordial Equilibrium
Primordial Care
Force Of Being
Forgiveness

Blessed are they that have not seen, and yet have believed. John 20:29

TECTechnic Logo, Kimberlee J. Benart | © 2018 | All rights reserved | Founder and Site Programmer, Peter O. Sagay.