Probability Density Functions

/ is the division symbol

Identity: $f(x) \geq 0$ in domain of X and $\int_{-\infty}^{\infty} f(x) d x=1$; implies $f(x)$ is a probability density function. The identity of a probability function implies that the graph of $f(x)$ must lie above or on the x axis and the area under the graph must be equal to 1 for all values in the domain of X .
(1) If $f(x)=k x^{2}$, determine the value of k that makes $f(x)$ a probability density function on $0 \leq x \leq 2$.

Ans (1) $\int_{0}^{2} k x^{2} d x=k\left[x^{3} / 3^{2}\right]=8 k / 3=1$ implies $k=3 / 8$. Clearly $f(x) \geq 0$ on $0 \leq x \leq 2$.
(2) $f(x)=6\left(x-x^{2}\right)$ is a probability function on $0 \leq x \leq 1$. Determine the following probabilities
(a) $1 / 4 \leq x \leq 1 / 2$
(b) $x \geq 1 / 4(x$ at least $1 / 4)$
(c) $\mathrm{x} \leq 3 / 4(\mathrm{x}$ at most $3 / 4)$

Ans (2a) $\int_{1 / 4}^{1 / 2} 6\left(x-x^{2}\right) d x=6\left[x^{2} / 2-x^{3} / 3\right] 1 / 4 \quad 1 / 2-5 / 32=11 / 32$.
(b) $6\left[x^{2} / 2-x^{3} / 3\right] \frac{1}{1 / 4}=27 / 32$.
(c) $6\left[x^{2} / 2-x^{3} / 3\right]_{0}^{3 / 4}$

Constant value probability density function: $f(x)=1 /(B-A) ; A \leq x \leq B$
(3) An automated machine produces an automobile part every 3 minutes. An inspector arrives at random time and must wait X minutes for a part.
(a) Find the probability density function for X
(b) Find the probability that the inspector must wait at least 1 minute.
(c) Find the probability that the inspector must wait no more than 1 minute

Ans (3a) $f(x)=1 / 3 ; \quad 0 \leq x \leq 3$
(b) $\int_{1}^{3} 1 / 3 d x=1 / 3[x]=2 / 3$
(c) $1 / 3[\mathrm{x}]_{0}^{1}=1 / 3$

Exponential probability density function: $f(x)=\lambda e^{-\lambda}$. a $=$ aversge value of X, implies $\lambda=1 / a$.
(4) The service time X at a gas station has an exponential probability density function. It takes an average of 4 minutes to get serviced.
(a) What fraction of the cars are serviced within 2 minutes?
(b) What is the probability that a car will have to wait at least 4 minutes?

Probability Density Functions

Ans (4a) average value $a=4$, so $\lambda=1 / a=1 / 4$
So, $f(x)=1 / 4 e^{-x / 4} \quad x \geq 0$; So, $\int_{0}^{2} 1 / 4 e^{-x / 4} d x=\left[-e^{-x / 4}\right]_{0}^{2}=0.3934$.
(b) $\left[-\mathrm{e}^{-\mathrm{x} / 4}\right]_{4}^{\infty}=-0+\mathrm{e}^{-1}=0.36788$.
(5) The exponential probability density function is used to model the inter-arrival times in seconds between successive cars at a given toll booth. Find the probability that X is at least 3 seconds, if the average inter-arrival time is 2 seconds.

Ans (5) $\int_{3}^{\infty} 1 / 2 \mathrm{e}^{-\mathrm{x} / 2} \mathrm{dx}=\left[-\mathrm{e}^{-\mathrm{x} / 2}\right]_{3}^{\infty}=0.22313$.
(6) The exponential probability density function with an average value of 2 years is used to model the elapsed time between successive retirements of Justices of the U. S Supreme Court. Suppose a new President takes office at the same time a Justice retires. What is the probability that the next vacancy will take place during his 4 -year term?

Ans (6) $\int_{0}^{4} 1 / 2 \mathrm{e}^{-\mathrm{x} / 2} \mathrm{dx}=\left[-\mathrm{e}^{-\mathrm{x} / 2}\right]_{0}^{4}=1-\mathrm{e}^{-2}=1-0.13534=0.86466$.
(7) The probability density function of the survival times X , after a group of patients have been treated for a given ailment is $f(x)=k e-k x$ for some constant k. The survival function $S(x)$ is the probability that a person chosen at random from the group of patients survives at least x years. Suppose $S(5)=0.90$ find the constant k in $\mathrm{f}(\mathrm{x})$.

Ans (7) $\int_{5}^{\infty} \mathrm{ke}-{ }^{\mathrm{kx}} \mathrm{dx}=\left[-\mathrm{e}^{-\mathrm{kx}}\right]_{5}^{\infty}=\mathrm{e}^{-5 \mathrm{k}}=0.90$. So , $-5 \mathrm{k}=\ln 0.90$ from which $\mathrm{k}=0.0211$.

Peter Oye Simate Sagay
Simate was my mother
Sagay was my father.

