Probability Density Functions

/ is the division symbol

Identity: $f(x) \ge 0$ in domain of X and $\int_{-\infty}^{\infty} f(x) dx = 1$; implies f(x) is a probability density function.

The identity of a probability function implies that the graph of f(x) must lie above or on the x axis and the area under the graph must be equal to 1 for all values in the domain of X.

(1) If $f(x) = kx^2$, determine the value of k that makes f(x) a probability density function on $0 \le x \le 2$.

Ans (1) $\int_0^2 kx^2 dx = k \left[x^3/3 \right]_0^2 = 8k/3 = 1$ implies k = 3/8. Clearly $f(x) \ge 0$ on $0 \le x \le 2$.

(2) $f(x) = 6(x - x^2)$ is a probability function on $0 \le x \le 1$. Determine the following probabilities (a) $1/4 \le x \le 1/2$ (b) $x \ge \frac{1}{4}$ (x at least $\frac{1}{4}$) (c) $x \le \frac{3}{4}$ (x at most $\frac{3}{4}$)

Ans (2a)
$$\int_{1/4}^{1/2} 6(x - x^2) dx = 6[x^2/2 - x^3/3]_{1/4}^{1/2} = \frac{1}{2} - \frac{5}{32} = \frac{11}{32}.$$

(b) $6[x^2/2 - x^3/3]_{1/4}^{1} = \frac{27}{32}.$
(c) $6[x^2/2 - x^3/3]_{0}^{3/4}$

Constant value probability density function: f(x) = 1/(B - A); $A \le x \le B$

(3) An automated machine produces an automobile part every 3 minutes. An inspector arrives at random time and must wait X minutes for a part.

(a) Find the probability density function for X

(b) Find the probability that the inspector must wait at least 1 minute.

(c) Find the probability that the inspector must wait no more than 1 minute

Ans (3a) $f(x) = 1/3; 0 \le x \le 3$

(b)
$$\int_{1}^{3} 1/3 \, dx = 1/3 \begin{bmatrix} 3 \\ 1 \end{bmatrix}_{1}^{3} = 2/3$$

(c) $1/3 \begin{bmatrix} x \end{bmatrix}_{0}^{1} = 1/3$

Exponential probability density function: $f(x) = \lambda e^{-\lambda}$. a = aversge value of X, implies $\lambda = 1/a$.

(4) The service time X at a gas station has an exponential probability density function. It takes an average of 4 minutes to get serviced.

(a) What fraction of the cars are serviced within 2 minutes?

(b) What is the probability that a car will have to wait at least 4 minutes?

Probability Density Functions

Ans (4a) average value a = 4, so $\lambda = 1/a = \frac{1}{4}$

So,
$$f(x) = 1/4e^{-x/4}$$
 $x \ge 0$; So, $\int_{0}^{2} 1/4e^{-x/4} dx = [-e^{-x/4}]_{0}^{2} = 0.3934.$
(b) $[-e^{-x/4}]_{4}^{\infty} = -0 + e^{-1} = 0.36788.$

(5) The exponential probability density function is used to model the inter-arrival times in seconds between successive cars at a given toll booth. Find the probability that X is at least 3 seconds, if the average inter-arrival time is 2 seconds.

Ans (5)
$$\int_{3}^{\infty} 1/2e^{-x/2} dx = [-e^{-x/2}]_{3}^{\infty} = 0.22313.$$

(6) The exponential probability density function with an average value of 2 years is used to model the elapsed time between successive retirements of Justices of the U. S Supreme Court. Suppose a new President takes office at the same time a Justice retires. What is the probability that the next vacancy will take place during his 4-year term?

Ans (6)
$$\int_{0}^{4} 1/2e^{-x/2} dx = [-e^{-x/2}]_{0}^{4} = 1 - e^{-2} = 1 - 0.13534 = 0.86466.$$

(7) The probability density function of the survival times X, after a group of patients have been treated for a given ailment is $f(x) = ke^{-kx}$ for some constant k. The survival function S(x) is the probability that a person chosen at random from the group of patients survives at least x years. Suppose S(5) = 0.90 find the constant k in f(x).

Ans (7)
$$\int_{5}^{\infty} \text{ke-}^{kx} dx = [-e^{-kx}]_{5}^{\infty} = e^{-5k} = 0.90$$
. So , $-5k = \ln 0.90$ from which $k = 0.0211$.

Peter Oye Simate Sagay Simate was my mother Sagay was my father.