

Figure 14.14

Figure 14.14 shows a one-dimensional heat flow problem. The bottom end of a laterally insulated unit rod is immersed in a water solution at a fixed reference temperature. The temperature at the top end is also fixed at the same reference temperature. The initial boundary value problem (IBVP) of the heat flow problem is as follows:

PDE	$\mathbf{u t}_{\mathrm{t}}=\boldsymbol{\alpha}^{2} \mathbf{u}_{\mathbf{x x}}$	$0<\mathrm{x}<1$	$0<\mathrm{t}<\infty$
BCs	$\mathbf{u}(\mathbf{0 , t})=\mathbf{0}$	$\mathbf{0}<\mathrm{t}<\infty$	homogeneous BCs
	$\mathrm{u}_{\mathrm{x}}(\mathbf{1 , t})+\mathrm{hu}(1, \mathrm{t})=0$		
IC	$\mathbf{u}(\mathrm{x}, \mathbf{0})=\mathrm{x}$	$0 \leq \mathrm{x} \leq 1$	

Determine the function $\mathbf{u}(\mathbf{x}, \mathbf{t})$ by the separation of variables method.
where $\mathbf{u}(\mathbf{x}, \mathbf{t})$ represents the temperature at some point \mathbf{x} along the rod and at some point in time, \mathbf{t}.
$\mathbf{u}_{\mathbf{t}}=\boldsymbol{\delta} \mathbf{u} / \boldsymbol{\delta} \mathbf{t} ; \quad \mathbf{u}_{\mathbf{x x}}=\boldsymbol{\delta}^{\mathbf{2}} \mathbf{u} / \boldsymbol{\delta} \mathbf{x}^{2} ; \mathbf{h}=$ heat exchange coefficient.
$\boldsymbol{\alpha}^{2}=$ diffusivity ($\mathrm{cm}^{2} / \mathrm{sec}$)
PDE (partial differential equation)
BCs (boundary conditions)
IC (initial condition).

In Search Of The Function u (x,t) By The Separation Of Variables Method.

Assertion 1: there exists functions $\mathrm{X}_{\mathrm{n}}(\mathrm{x})$ and $\mathrm{T}_{\mathrm{n}}(\mathrm{t})$ such that:

$$
\mathbf{u}_{\mathbf{n}}(\mathbf{x}, \mathbf{t})=\mathbf{X}_{\mathrm{n}}(\mathbf{x}) \mathbf{T}_{\mathrm{n}}(\mathbf{t}) \cdots-\cdots---(1) \text { (called fundamental solutions) }
$$

Assertion 2: the identity of $\mathbf{u}(\mathbf{x}, \mathbf{t})$ is the same as the identity of the infinite sum of $\mathbf{u}_{\mathbf{n}}(\mathbf{x}, \mathbf{t})$ that satisfies the given IBVP. That is:

$$
\mathbf{u}(\mathbf{x}, \mathbf{t})=\underset{\mathrm{n}=1}{\infty} \mathbf{A}_{\mathbf{n}} \mathbf{u}_{\mathbf{n}}(\mathbf{x}, \mathbf{t})=\underset{\mathrm{n}=1}{\boldsymbol{\sum} \mathbf{A}_{\mathbf{n}} \mathbf{X}_{\mathbf{n}}(\mathbf{x}) \mathbf{T}_{\mathbf{n}}(\mathbf{t})-\cdots--- \text { (2) (if IBVP is satisfied) }}
$$

Separating Variables:

$$
u(x, t)=X(x) T(t) \text { and } u_{t}=\alpha^{2} u_{x x}
$$

Implies:

$$
X(x) T^{\prime}(t)=\alpha^{2} X^{\prime \prime}(x) T(t)-\cdots---(3)
$$

where $T^{\prime}(t)=\delta T / \delta t=u_{t}=\delta u / \delta t$; and $X^{\prime \prime}=\delta^{2} X / \delta x^{2}=u_{x x}=\delta^{2} u / \delta x^{2}$
Dividing equation (3) by $\boldsymbol{\alpha}^{2} \mathbf{X}(\mathbf{x}) \mathbf{T}(\mathbf{t})$, we have :

$$
\begin{equation*}
X(x) T(t) / \alpha^{2} X(x) T(t)=\alpha^{2} X "(x) T(t) / \alpha^{2} X(x) T(t) \tag{4}
\end{equation*}
$$

So, $\quad T^{\prime}(\mathbf{t}) / \boldsymbol{\alpha}^{2} \mathbf{T}(\mathbf{t})=\mathbf{X}(\mathbf{x}) / \mathbf{X}(\mathbf{x})$
The left hand side of equation (4) depends only on t and the right hand side depends only on x. Since x and t are independent, equation (4) implies that:

$$
\mathbf{T}^{\prime}(\mathbf{t}) / \boldsymbol{\alpha}^{2} \mathbf{T}(\mathbf{t})=\boldsymbol{\mu} \quad \text { (where } \mu \text { is the separation constant) }
$$

and

$$
X "(x) / X(x)=\mu
$$

So,

$$
\begin{equation*}
T^{\prime}(t)-\mu \alpha^{2} T(t)=0 \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
X^{\prime \prime}(x)-\mu X(x)=0 \tag{6}
\end{equation*}
$$

Equations (5) and (6) separate the variables and reduce the PDE to two ODEs.

$$
\begin{align*}
& \mathbf{T}^{\prime}(\mathbf{t})-\boldsymbol{\mu} \boldsymbol{\alpha}^{2} \mathbf{T}(\mathbf{t})=0 \tag{5}\\
& \mathbf{X}^{\prime \prime}(\mathbf{x})-\boldsymbol{\mu} \mathbf{X}(\mathbf{x})=0 \tag{6}
\end{align*}
$$

$\boldsymbol{\mu}<\boldsymbol{0}$ is the domain of $\boldsymbol{\mu}$ for which equations (5) and (6) are meaningful. If $\boldsymbol{\mu}>\mathbf{0}, \mathbf{u}(\mathbf{x}, \mathbf{t})=\mathbf{X}(\mathbf{x}) \mathbf{T}(\mathbf{t})$ tends to infinity. If $\boldsymbol{\mu}=\mathbf{0}, \mathbf{u}(\mathbf{x}, \mathbf{t})=\mathbf{0}$.
$\boldsymbol{\mu}$ is set equal to $-\lambda^{2}$ for $\boldsymbol{\mu}<\mathbf{0}$. So, equations (5) and (6) become:

$$
\begin{align*}
& \mathbf{T}^{\prime}(\mathbf{t})+\lambda^{2} \boldsymbol{\alpha}^{2} \mathbf{T}(\mathbf{t})=\mathbf{0}-\cdots(7) \\
& \mathbf{X}^{\prime \prime}(\mathbf{x})+\lambda^{2} \mathbf{X}(\mathbf{x})=\mathbf{0}-\cdots-(8) \tag{8}
\end{align*}
$$

The solutions for equations (7) and (8) are as follows:

$$
\begin{align*}
& T(t)=A e^{-(\lambda \alpha)^{2} t} \tag{9}\\
& X(x)=B \sin (\lambda x)+C \cos (\lambda x) \tag{10}
\end{align*}
$$

$$
\begin{equation*}
\text { So, } \quad \mathbf{u}(\mathbf{x}, \mathbf{t})=\mathbf{X}(\mathbf{x}) \mathbf{T}(\mathbf{t})=\mathrm{e}^{-(\lambda \alpha)^{2} \mathrm{t}}[\mathrm{~A} \sin (\lambda \mathbf{x})+\mathbf{B} \cos (\lambda \mathbf{x})] \tag{11}
\end{equation*}
$$

satisfies the PDE,

$$
\mathbf{u}_{\mathrm{t}}=\alpha^{2} \mathbf{u}_{\mathrm{xx}} \quad 0<\mathbf{x}<\mathbf{1}
$$

$$
\mathbf{0}<\mathbf{t}<\infty
$$

for any λ and any A and B.

There are infinitely many $\mathbf{u}(\mathbf{x , t})$, as expressed in equation (11) that satisfy the PDE.
We now look for those that satisfy both the PDE and the boundary conditions (BCs):

$$
\begin{array}{r}
u(0, t)=0 \\
\mathbf{u}_{\mathrm{x}}(1, \mathrm{t})+\mathrm{hu}(1, t)=0
\end{array}
$$

So, substituting $e^{-(\lambda \boldsymbol{\alpha})^{2}}[A \sin (\lambda \mathbf{x})+B \cos (\lambda \mathbf{x})]$ into the $B C s$, we have:

$$
\begin{aligned}
& B e^{-(\lambda \alpha)^{2} t}=0=>B=0 \\
& A \lambda e^{-(\lambda \alpha)^{2} t} \cos \lambda+h A e^{-(\lambda \alpha)^{2} t} \sin \lambda=0
\end{aligned}
$$

So,

$$
\begin{equation*}
\tan \lambda=-\lambda / h \tag{12}
\end{equation*}
$$

$\boldsymbol{\operatorname { t a n }} \lambda=-\lambda / \mathrm{h}------(12)$
The values of λ for a given value of \mathbf{h} (can be computed numerically with the aid of a computer) for which equation (12) is satisfied are called the eigenvalues of the boundary-value problem:

$$
\begin{align*}
& \mathbf{X "}(\mathbf{x})+\lambda^{2} \mathbf{X}(\mathbf{x})=\mathbf{0}---------(13) \tag{14}\\
& \mathrm{X}(0)=0 \\
& \mathbf{X}(1)+h X(1)=0 \tag{15}
\end{align*}
$$

These eigenvalues are the values of λ for which there exists a nonzero solution for the boundary-value problem. The solutions of the boundary-value problem derived from the eigenvalues λ_{n} are called the eigenfunctions, $\mathrm{X}_{\mathrm{n}}(\mathrm{x})$. For this boundary-value problem (equations 13 thru 15):

$$
X_{n}(x)=\sin \left(\lambda_{n} x\right)
$$

So, the infinite number of fundamental functions can be expressed as follows:

$$
\begin{equation*}
u_{n}(x, t)=X_{n}(x) T_{n}(t)=e^{-\left(\lambda_{n} \alpha\right)^{2} t} \sin \left(\lambda_{n} x\right) \tag{16}
\end{equation*}
$$

Each of these functions satisfy the PDE and the BCs. Their sum such that the initial condition IC is satisfied is the identity of $u(x, t)$.

$$
\text { So, } \quad u(x, t)=\sum_{n=1}^{\infty} a_{n} e^{-\left(\lambda_{n} \alpha\right)^{2} t} \sin \left(\lambda_{n} x\right)
$$

such that the initial condition (IC), $\mathrm{u}(\mathrm{x}, 0)=0$ is satisfied. That is:

$$
\mathrm{u}(\mathrm{x}, 0)=\mathrm{x}=\sum_{\mathrm{n}=1}^{\infty} \mathrm{a}_{\mathrm{n}} \sin \left(\lambda_{\mathrm{n}} \mathrm{x}\right)
$$

$$
\begin{equation*}
\mathrm{u}(\mathrm{x}, 0)=\mathrm{x}=\sum_{\mathrm{n}=1}^{\infty} \mathrm{a}_{\mathrm{n}} \sin \left(\lambda_{\mathrm{n}} \mathrm{x}\right) \tag{18}
\end{equation*}
$$

The constants $\mathbf{a}_{\mathbf{n}}$ in the eigenfunction expansion (equation 18) can be determined by multiplying each side of equation (18) by $\boldsymbol{\operatorname { s i n }}\left(\boldsymbol{\lambda}_{\mathbf{m}} \mathbf{x}\right)$ and integrating x from 0 to 1 :

$$
\int_{0}^{1} x \sin \left(\lambda_{m} x\right) d x=\sum_{n=1}^{\infty} a_{n} \int_{0}^{1} \sin \left(\lambda_{n} x\right) \sin \left(\lambda_{m} x\right) d x-
$$

let $x=\xi ;$ then, $d x / d \xi=1$

So, equation (19) becomes:

$$
\begin{aligned}
\int_{0}^{1} \xi \sin \left(\lambda_{m} \xi\right) d \xi & =\sum_{n=1}^{\infty} a_{n} \int_{0}^{1} \sin \left(\lambda_{n} \xi\right) \sin \left(\lambda_{m} \xi\right) d \xi \\
& =a_{m} \int_{0}^{1} \sin ^{2}\left(\lambda_{m} \xi\right) d \xi \\
& =a_{m}\left(\lambda_{m}-\sin \lambda_{m} \cos \lambda_{m}\right) / 2 \lambda_{m} \\
a_{m} & =2 \lambda_{m} /\left(\lambda_{m}-\sin \lambda_{m} \cos \lambda_{m}\right) \int_{0}^{1} \xi \sin \left(\lambda_{m} \xi\right) d \xi
\end{aligned}
$$

So,

Changing notation to n, we have:

$$
\begin{equation*}
a_{n}=2 \lambda_{n} /\left(\lambda_{n}-\sin \lambda_{n} \cos \lambda_{n}\right) \int_{0}^{1} \xi \sin \left(\lambda_{n} \xi\right) d \xi-\cdots- \tag{21}
\end{equation*}
$$

So, the solution to the IBVP problem is:

So,

$$
u(x, t)=\sum_{n=1}^{\infty} \mathbf{a}_{n} \mathrm{e}^{-\left(\lambda_{n} \alpha\right)^{2} t} \sin \left(\lambda_{n} x\right)
$$

where the constants $\mathbf{a}_{\mathbf{n}}$ are calculated from equation (21). Separation method is valid only for homogeneous IBVP. Other methods are used to solve non-homogeneous IBVP.

The String: $\mathbf{S}_{7} \mathbf{P}_{2} \mathbf{A}_{21}$ (Identity - Physical Properties).

The Pj Problem of interest is of type identity. All problems of mathematical modeling are identity problems because the problems seek the mathematical structure of the physical problem being modeled.

