
Figure 14.14 shows a one-dimensional heat flow problem. The bottom end of a laterally
insulated unit rod is immersed in a water solution at a fixed reference temperature. The
temperature at the top end is also fixed at the same reference temperature.  The initial
boundary value problem (IBVP) of the heat flow problem  is as follows:
  
      PDE       ut  =  α2uxx                                      0 < x < 1                     0 < t < ∞    
      ----------------------  
                        u (0,t) =  0                    
       BCs                                                              0 < t < ∞       homogeneous BCs
                     ux (1,t)  +  hu (1,t) = 0 
      ------------------------
       IC          u (x,0)  =  x                                   0 ≤ x ≤ 1

Determine the function u (x,t) by the separation of variables method.

where u(x,t) represents the temperature at some point x along the rod and at some point
in time, t.
ut  = δu/δt;          uxx = δ2u/δx2;   h = heat exchange coefficient.
α2  = diffusivity (cm2/sec)
PDE (partial differential equation)
BCs (boundary conditions)
IC (initial condition).



  In Search Of The Function u (x,t) By The Separation Of Variables Method.

Assertion 1: there exists functions Xn(x) and Tn(t)  such that:

                         un (x,t)   =  Xn(x) Tn(t)  --------(1)  (called fundamental solutions)

Assertion 2:  the identity of u(x,t) is the same as the identity of the infinite sum of 
  un (x,t) that satisfies the given  IBVP.  That is:

                                  ∞                      ∞
                 u (x,t)  =  Σ Anun (x,t)  =  Σ AnXn(x) Tn(t)-------(2)  (if IBVP is satisfied)
                                  n=1                   n=1

Separating Variables:

                           u (x,t)  =  X(x)T(t)  and ut = α2uxx 

Implies:

                             X(x)T’(t)  = α2X”(x)T(t)-------(3)

where T’(t) =  δT/δt = ut = δu/δt; and X” = δ2X/δx2 = uxx = δ2u/δx2

Dividing equation (3) by α2X(x)T(t),  we have :

               X(x)T’(t)/ α2X(x)T(t) = α2X”(x)T(t)/ α2X(x)T(t)

So,             T’(t)/α2T(t)  =  X”(x)/ X(x)---------(4) 

The left hand side of equation (4) depends only on t and the right hand side depends
only on x. Since x and t are independent, equation (4) implies that:

                   T’(t)/α2T(t)  =   μ     (where μ is the separation constant)
and
                   X”(x)/ X(x)  =   μ 

So,              T’(t)  - μ α2T(t)  =  0----------(5)
and
                   X”(x) - μ X(x)    =   0---------(6)

Equations (5) and (6) separate the variables and reduce the PDE to two ODEs.



                   T’(t)   -  μ α2T(t)  =  0----------(5)
                   
                   X”(x)  -  μ X(x)    =  0----------(6)

μ < 0  is the domain  of μ for which equations (5) and (6)  are meaningful.
If   μ  > 0,  u (x,t) = X(x)T(t) tends to infinity. If  μ = 0, u (x,t) = 0.              
μ  is set equal to  - λ2  for μ < 0.  So, equations (5) and (6) become:

                  T’(t)   +   λ2 α2T(t)  =  0----------(7)
                   
                  X”(x)  +  λ2 X(x)     =   0----------(8)

The solutions for equations (7) and (8) are as follows:

                                          T(t)  =   A℮-(λα)
2

t  ---------(9)
                                        
                                         X(x)  =  B sin(λx) + C cos(λx)---------(10)

So,             u (x,t)  =  X(x)T(t)  = ℮-(λα)
2

t[ A sin(λx) + B cos(λx)]-----------(11)

satisfies the PDE,                  ut  =  α2 uxx           0 < x  < 1                   0 < t < ∞

for any λ and any A and B. 

There are infinitely many u (x,t), as expressed in equation (11) that satisfy the PDE.
We now look for those that satisfy both the PDE and the boundary conditions (BCs):

                                          u (0,t) = 0
                     ux (1,t)  +  hu (1,t)  = 0

So, substituting    ℮-(λα)
2
t[ A sin(λx) + B cos(λx)]  into the BCs, we have:

                                     B℮-(λα)
2

t  = 0  => B = 0

                            Aλ℮-(λα)
2
t cos λ  +  hA℮-(λα)

2
t sin λ  =  0

  So,                                    tan λ  =  -λ/h -------(12)
                                                                                   



                   
                                         tan λ  =  -λ/h -------(12)

The values of  λ for a given value of h (can be computed numerically with the aid of a
computer)  for  which equation  (12)  is  satisfied  are  called  the  eigenvalues of  the
boundary-value problem:               
                  
                         X”(x)  +  λ2 X(x) = 0 -----------(13)
                                                
                                             X(0) = 0 -----------(14)
                   
                             X(1) + hX(1)  =  0 -----------(15)

These eigenvalues are the values of λ for which there exists a nonzero solution for the
boundary-value problem. The solutions of the boundary-value problem derived from the
eigenvalues  λn are called the  eigenfunctions, Xn(x). For this boundary-value problem
(equations 13 thru 15):
                                                  
                                         Xn(x)  =  sin (λnx)

So, the infinite number of fundamental functions can be expressed as follows:

                              un (x,t)  =  Xn (x) Tn (t)  = ℮ -(λn
α)

2
t  sin (λnx) ---------------(16)

Each of these functions satisfy the PDE and the BCs. Their sum such that the initial
condition IC is satisfied is the identity of u (x,t).

                                                ∞

So,                         u (x, t)  =   Σ an℮ -(λn
α)

2
t  sin (λnx)     ------------------------(17)

                                                 n=1

such that the initial condition (IC) , u(x, 0)  =  0  is satisfied. That is:

                                                        ∞                          

                              u (x, 0)  =  x  =  Σ an sin (λnx)   ------------------------------(18)
                                                       n=1



                                                         ∞                          

                              u (x, 0)  =  x  =  Σ an sin (λnx)   ------------------------------(18)
                                                         n=1

The constants  an in the eigenfunction expansion (equation 18) can be determined by
multiplying each side of equation (18) by sin (λmx) and integrating x  from 0 to 1:

                                                                             
                                                        ∞                           

                      ∫
0

1

x sin (λmx) dx   =  Σ an ∫
0

1

sin (λnx) sin (λmx) dx------------(19)

                                                      n=1
let x = ξ ;  then,  dx/dξ = 1                                                         

So, equation (19) becomes:                                                           
                                                       
                                                       ∞                           

                      ∫
0

1

ξ sin (λmξ) dξ   =  Σ an ∫
0

1

sin (λnξ) sin (λmξ) dξ------------(20)

                                                      n=1

                                       = am ∫
0

1

 sin2 (λmξ) dξ

                                             
                                                  =  am (λm – sin λm cos λm)/2λm    

So,                                    am     =     2λm /(λm – sin λm cos λm) ∫
0

1

ξ sin (λmξ) dξ

Changing notation to n, we have:
                                    

                                         an     =     2λn/(λn – sin λn cos λn) ∫
0

1

ξ sin (λnξ) dξ-----(21)

So, the solution to the IBVP problem is:

                                                 ∞

So,                         u (x, t)  =   Σ an℮ -( λn
α )

2
t  sin (λnx)     ------------------------(22)

                                                 n=1

where  the constants  an  are calculated from equation (21). Separation method is valid
only for homogeneous IBVP. Other methods are used to solve non-homogeneous  IBVP.



The String: S7P2A21 (Identity – Physical Properties).

The Pj Problem of interest is of type identity. All problems of mathematical modeling
are  identity  problems  because  the  problems  seek  the  mathematical  structure  of  the
physical problem being modeled.


