Uniqueness Proof Technique

Strings (SiPjAjk) = S7P2A21     Base Sequence = 12735     String Sequence = 12735 - 2 - 21

Expressions Of Pj Problems
Uniqueness Proof Technique
Math Suppose If A then B is a proposition involving statements A and B. The existence of B does not necessarily establish the uniqueness of B. The Uniqueness Proof Technique can be used to establish the uniqueness of B.

Prove, by the direct uniqueness method, that if a, b, c, d, e, and f are real numbers such that (ad - bc) ≠ 0, then there are unique real numbers x and y such that (ax + by) = e and (cx + dy) = f

The strings: S7P2A21 (Identity - Physical Property).

The math:
Pj Problem of Interest is of type identity (physical property). Proofs establish truths. So they are identity problems. The conceptual steps used in the Uniqueness Proof Technique is illustrated in figure 121.4.
Existence is usually explicitly indicated with the quantifiers: there is, there are, for all, for each, etc. These quantifiers can be assigned to two main groups:existential quantifiers(e.g. there is, there are) and universal quantifiers (e.g. for all).

Establish the existence of x and y in the given problem:
The existential quantifier, "there are" is implicit in the problem. In order words, we can restate B as:

There are real numbers x and y such that (ax + by) = e and (cx + dy) = f.

If we multiply (ax + by) = e by d, we have:
d(ax + by) = de ------(1)
If we multiply (cx + dy) by b, we have:
b(cx + dy) = bf ------(2)
subtracting equation (2) from (1), we have:
(dax + dby - bcx -bdy) = de - bf--------(3)
So, (da - bc)x + (db - bd)y = de - bf
So, x = (de - bf)/(da - bc) ------------(4)
Similarly, if we multiply (ax + by) = e by c and (cx + dy) by a, we have:
y = (af - ce)/(ad - bc) ----------------(5)

The values of x and y exist for the given problem if they satisfy:
(ax + by) = e and (cx + dy)
[a(de-bf)/(da-bc) + b(af-ce)/(ad-bc)] = [ade -abf + baf - bce]/(da-bc)
= e(ad-bc)/(da-bc) = e.
[c(de-bf)/(da-bc) + d(af-ce)/(ad-bc)] = [cde -cbf + daf - dce]/(da-bc)
= f(ad-bc)/(da-bc) = f.
So, existence of x and y established.

Establish the uniqueness of x and y in the given problem:
Assume two different x values (x1, x2), and two different y values(y1, y2) then:

ax1 + by1 = e-------(1)
cx1 + dy1 = f-------(2)
ax2 + by2 = e-------(3)
cx2 + dy2 = f-------(4)

equation(1) - Equation(3) gives:
[a(x1-x2) + b(y1-y2)] = 0 -------(5)

equation(2) - Equation(4) gives:
[c(x1-x2) + d(y1-y2)] = 0---------(6)

Multiplying equation(5) by d and equation (6) by b, then subtracting (6) from (5) gives:
[(ad - bc)(x1-x2)] = 0.
So, (x1-x2) = 0 since (ad - bc) ≠ 0.
So, x1 = x2
Similarly, y1 = y2
So, uniqueness is proved. The point . is a mathematical abstraction. It has negligible size and a great sense of position. Consequently, it is front and center in abstract existential reasoning.
Single Variable Functions
Conics
Ordinary Differential Equations (ODEs)
Vector Spaces
Real Numbers
Separation Of Variables As Solution Method For Homogeneous Heat Flow Equation
Newton And Fourier Cooling Laws Applied To Heat Flow Boundary Conditions
Fourier Series
Derivation Of Heat Equation For A One-Dimensional Heat Flow The Universe is composed of matter and radiant energy. Matter is any kind of mass-energy that moves with velocities less than the velocity of light. Radiant energy is any kind of mass-energy that moves with the velocity of light.
Periodic Table
Composition And Structure Of Matter
How Matter Gets Composed
How Matter Gets Composed (2)
Molecular Structure Of Matter
Molecular Shapes: Bond Length, Bond Angle
Molecular Shapes: Valence Shell Electron Pair Repulsion
Molecular Shapes: Orbital Hybridization
Molecular Shapes: Sigma Bonds Pi Bonds
Molecular Shapes: Non ABn Molecules
Molecular Orbital Theory
More Pj Problem Strings

Blessed are they that have not seen, and yet have believed. John 20:29

TECTechnic Logo, Kimberlee J. Benart | © 2018 | All rights reserved | Founder and Site Programmer, Peter O. Sagay.