Chemical Properties Of Elements Due To Valence Shell Electrons
TECTechnics Classroom   TECTechnics Overview

Expressions Of Pj Problems
Chemical Properties Of Elements Due To Valence Shell Electrons

Similar Valence Shell Electrons Similar Chemical properties
The electron configurations of seven elements of the Periodic Table are shown in Table 10.1. Which of the elements should have similar physical and chemical properties?

The string:
S7P2A22 (Identity - Chemical properties).
The math:
Similar Valence Shell Electrons Similar Chemical properties
Pj Problem of Interest is of type identity. The Pj Problem of type grouping is also important because the problem is to determine groups of elements with similar chemical properties. However, the grouping is implicit in the identity of the elements. It is through the atomic numbers (identity) of the elements that one determines the valence-shell electrons which establish the properties of the elements.

Table 10.1, Row 1: element is Helium (He)
Atomic number = 2; Valence-shell electrons = 2.

Row 2: element is Beryllium (Be)
Atomic number = 4; Valence-shell electrons = 2.

Row 3: element is Carbon (C)
Atomic number = 6; Valence-shell electrons = 4.

Row 4: element is Fluorine (F)
Atomic number = 9; Valence-shell electrons = 7.

Row 5: element is Magnesium (Mg)
Atomic number = 12; Valence-shell electrons = 2.

Row 6: element is Phosphorus (P)
Atomic number = 15; Valence-shell electrons = 5.

Row 7: element is Chromium (Cr)
Atomic number = 24; Valence-shell electrons = 6.

Beryllium and Magnesium are metals that have the same number of valence-shell electrons and so should have similar chemical properties. Helium also has 2 valence-shell electrons but it is a gas and is usually grouped with the inert gases.

In general, elements with the same number of valence-shell electrons have similar physical and chemical properties. Also the group number of an element in the periodic table equals the number of its valence-shell electrons. Consequently, members of the same group have similar physical and chemical properties.

Math

The point . is a mathematical abstraction. It has negligible size and a great sense of position. Consequently, it is front and center in abstract existential reasoning.
Derivation Of The Area Of A Circle, A Sector Of A Circle And A Circular Ring
Derivation Of The Area Of A Trapezoid, A Rectangle And A Triangle
Derivation Of The Area Of An Ellipse
Derivation Of Volume Of A Cylinder
Derivation Of Volume Of A Sphere
Derivation Of Volume Of A Cone
Derivation Of Volume Of A Torus
Derivation Of Volume Of A Paraboloid
Volume Obtained By Revolving The Curve y = x2 About The X Axis
Single Variable Functions
Absolute Value Functions
Conics
Real Numbers
Vector Spaces
Equation Of The Ascent Path Of An Airplane
Calculating Capacity Of A Video Adapter Board Memory
Probability Density Functions
Boolean Algebra - Logic Functions
Ordinary Differential Equations (ODEs)
Infinite Sequences And Series
Introduction To Group Theory
Advanced Calculus - Partial Derivatives
Advanced Calculus - General Charateristics Of Partial Differential Equations
Advanced Calculus - Jacobians
Advanced Calculus - Solving PDEs By The Method Of Separation Of Variables
Advanced Calculus - Fourier Series
Advanced Calculus - Multiple Integrals
Production Schedule That Maximizes Profit Given Constraint Equation
Separation Of Variables As Solution Method For Homogeneous Heat Flow Equation
Newton And Fourier Cooling Laws Applied To Heat Flow Boundary Conditions
Fourier Series
Derivation Of Heat Equation For A One-Dimensional Heat Flow
Homogenizing-Non-Homogeneous-Time-Varying-IBVP-Boundary-Condition


The Universe is composed of matter and radiant energy. Matter is any kind of mass-energy that moves with velocities less than the velocity of light. Radiant energy is any kind of mass-energy that moves with the velocity of light.
Periodic Table
Composition And Structure Of Matter
How Matter Gets Composed
How Matter Gets Composed (2)
Molecular Structure Of Matter
Molecular Shapes: Bond Length, Bond Angle
Molecular Shapes: Valence Shell Electron Pair Repulsion
Molecular Shapes: Orbital Hybridization
Molecular Shapes: Sigma Bonds Pi Bonds
Molecular Shapes: Non ABn Molecules
Molecular Orbital Theory
More Pj Problem Strings

What is Time?
St Augustine On Time
Bergson On Time
Heidegger On Time
Kant On Time
Sagay On Time
What is Space?
Newton On Space
Space Governance
Leaders
Imperfect Leaders
Essence Of Mathematics
Toolness Of Mathematics
The Number Line
Variables
Equations
Functions
The Windflower Saga
Who Am I?
Primordial Equilibrium
Primordial Care
Force Of Being
Forgiveness

Blessed are they that have not seen, and yet have believed. John 20:29

TECTechnic Logo, Kimberlee J. Benart | © 2000-2021 | All rights reserved | Founder and Site Programmer, Peter O. Sagay.