Pj Problems - Overview
Celestial Stars
The Number Line
Geometries
7 Spaces Of Interest - Overview
Triadic Unit Mesh
Creation
The Atom
Survival
Energy
Light
Heat
Sound
Music
Language
Stories
Work
States Of Matter
Buoyancy
Nuclear Reactions
Molecular Shapes
Electron Configurations
Chemical Bonds
Energy Conversion
Chemical Reactions
Electromagnetism
Continuity
Growth
Human-cells
Proteins
Nucleic Acids
COHN - Natures Engineering Of The Human Body
The Human-Body Systems
Vision
Walking
Behaviors
Sensors Sensings
Beauty
Faith, Love, Charity
Photosynthesis
Weather
Systems
Algorithms
Tools
Networks
Search
Differential Calculus
Antiderivative
Integral Calculus
Economies
Inflation
Markets
Money Supply
Painting
Figure 8.56 is a Wye (or Y) configuration of a Balanced three phase AC circuit. Show that:
(a) The magnitude of the line voltages is equal to √3 times the magnitude of the phase voltages.
(b) No conducting wire is needed to connect nodes n and n'.
(c) If the 3 balanced load impedances are replaced with 3 equal resistances R, the total instantaneous power delivered to the balanced load by the 3-phase generator is constant.
The string:
S7P3A32 (Force - Push).
The math:
Pj Problem of interest is of type force. Power and energy problems are force problems
Three-phase power is a configuration of three sinusoidal voltages that are generated out of phase with each other. It came about as a result of the need to improve the efficiency of single phase power delivery.
some of its advantages include:
(1) Delivery of steady constant supply of power. A single phase delivery is pulsating.
(2) Reduced transmission losses over long distances.
(3) Efficient use of conductors and circuit components
(4) Nonzero starting torque (moment of a force) for three-phase motors.
Balanced voltages implies that the voltages have equal amplitude and frequency and are out of phase by 120 degrees.
So, the phase voltages of Van, Vbn and Vcn in phasor form are:
Van = Van<0o
Vbn = Vbn<-(120)o
Vcn = Vcn<-(240)o =
Vcn<120o
Sum of phase voltages equal zero. That is:
Van + Vbn + Vcn = 0.
Voltage amplitudes, V are rms values,
(a) The line voltages (or line-line-voltages) in figure 8.56 are:
Voltages between lines aa' and bb'
Voltages between lines aa' and cc'
Voltages between lines bb' and cc'.
Line voltage between aa' and bb', Vab is:
Vab = Van - Vbn
Vab = Van<0o - Vbn<(-120)o
So, Vab = V(cos0 + jsin0) - V[cos(-120) + jsin(-120)] = 3/2V + (√3/2)Vj
= √3V<30o.
Line voltages between bb' and cc', Vbc is:
Vbc
= Vbn - Vcn
= Vbn<(-120)o - Vcn<120o = √3V<(-90)o.
Line voltages between cc' and aa', Vca is:
Vca
= Vcn - Van
= Vcn<120o - Van<0o
= √3V<150o.
So, amplitudes of line voltages equal √3 times amplitude of phase voltages.
(b) In = current from node n to node n'
= Ia + Ib + Ic
= (Van + Vbn + Vcn)/Z
= 0.
So, no need for a conducting wire between the nodes since In = 0.
(c) General expression for instantaneous power p(t):
p(t) = (V2/R)[1 + cos(2ωt + θ)]
where V is rms value.
So, instantaneous power due to source Vanis:
pa(t) = (V2/R)(1 + cos2ωt)
Instantaneous power due to source Vbn is:
pb(t)= (V2/R)[1 + cos(2ωt - 120o)]
Instantaneous power due to source Vcn is:
pc(t)= (V2/R)[1 + cos(2ωt + 120o)]
Total power P(t) = pa(t) + pb(t) + pc(t)
= 3V2/R + (V2/R)[cos2ωt + cos(2ωt - 120o) + cos(2ωt + 120o)] = 3V2/R + 0
= 3V2/R.
So, P(t) is a constant.
The point . is a mathematical abstraction. It has negligible size and a great sense of position. Consequently, it is front and center in abstract existential reasoning.
Derivation Of The Area Of A Circle, A Sector Of A Circle And A Circular Ring
Derivation Of The Area Of A Trapezoid, A Rectangle And A Triangle
Derivation Of The Area Of An Ellipse
Derivation Of Volume Of A Cylinder
Derivation Of Volume Of A Sphere
Derivation Of Volume Of A Cone
Derivation Of Volume Of A Torus
Derivation Of Volume Of A Paraboloid
Volume Obtained By Revolving The Curve y = x2 About The X Axis
Single Variable Functions
Absolute Value Functions
Conics
Real Numbers
Vector Spaces
Equation Of The Ascent Path Of An Airplane
Calculating Capacity Of A Video Adapter Board Memory
Probability Density Functions
Boolean Algebra - Logic Functions
Ordinary Differential Equations (ODEs)
Infinite Sequences And Series
Introduction To Group Theory
Advanced Calculus - Partial Derivatives
Advanced Calculus - General Charateristics Of Partial Differential Equations
Advanced Calculus - Jacobians
Advanced Calculus - Solving PDEs By The Method Of Separation Of Variables
Advanced Calculus - Fourier Series
Advanced Calculus - Multiple Integrals
Production Schedule That Maximizes Profit Given Constraint Equation
Separation Of Variables As Solution Method For Homogeneous Heat Flow Equation
Newton And Fourier Cooling Laws Applied To Heat Flow Boundary Conditions
Fourier Series
Derivation Of Heat Equation For A One-Dimensional Heat Flow
Homogenizing-Non-Homogeneous-Time-Varying-IBVP-Boundary-Condition
The Universe is composed of matter and radiant energy. Matter is any kind of mass-energy that moves with velocities less than the velocity of light. Radiant energy is any kind of mass-energy that moves with the velocity of light.
Periodic Table
Composition And Structure Of Matter
How Matter Gets Composed
How Matter Gets Composed (2)
Molecular Structure Of Matter
Molecular Shapes: Bond Length, Bond Angle
Molecular Shapes: Valence Shell Electron Pair Repulsion
Molecular Shapes: Orbital Hybridization
Molecular Shapes: Sigma Bonds Pi Bonds
Molecular Shapes: Non ABn Molecules
Molecular Orbital Theory
More Pj Problem Strings