Home

MarketPlace

The TECTechnics Classroom

3 Phase Power


Overview

TECians Login

Strings (SiPjAjk) = S7P3A32     Base Sequence = 12735     String Sequence = 12735 - 3 - 32

Expressions Of Pj Problems
3 Phase Power
Math

Pj Problems - Overview
Celestial Stars
The Number Line
Geometries
7 Spaces Of Interest - Overview
Triadic Unit Mesh
Creation
The Atom
Survival
Energy
Light
Heat
Sound
Music
Language
Stories
Work
States Of Matter
Buoyancy
Nuclear Reactions
Molecular Shapes
Electron Configurations
Chemical Bonds
Energy Conversion
Chemical Reactions
Electromagnetism
Continuity
Growth
Human-cells
Proteins
Nucleic Acids
COHN - Natures Engineering Of The Human Body
The Human-Body Systems
Vision
Walking
Behaviors
Sensors Sensings
Beauty
Faith, Love, Charity
Photosynthesis
Weather
Systems
Algorithms
Tools
Networks
Search
Differential Calculus
Antiderivative
Integral Calculus
Economies
Inflation
Markets
Money Supply
Painting

3 Phase Power
Figure 8.56 is a Wye (or Y) configuration of a Balanced three phase AC circuit. Show that:
(a) The magnitude of the line voltages is equal to √3 times the magnitude of the phase voltages.
(b) No conducting wire is needed to connect nodes n and n'.
(c) If the 3 balanced load impedances are replaced with 3 equal resistances R, the total instantaneous power delivered to the balanced load by the 3-phase generator is constant.

The string:
S7P3A32 (Force - Push).
The math:
3 Phase Power
Pj Problem of interest is of type force. Power and energy problems are force problems
Three-phase power is a configuration of three sinusoidal voltages that are generated out of phase with each other. It came about as a result of the need to improve the efficiency of single phase power delivery. some of its advantages include:
(1) Delivery of steady constant supply of power. A single phase delivery is pulsating.
(2) Reduced transmission losses over long distances.
(3) Efficient use of conductors and circuit components
(4) Nonzero starting torque (moment of a force) for three-phase motors.
Balanced voltages implies that the voltages have equal amplitude and frequency and are out of phase by 120 degrees.
So, the phase voltages of Van, Vbn and Vcn in phasor form are:
Van = Van<0o
Vbn = Vbn<-(120)o
Vcn = Vcn<-(240)o = Vcn<120o
Sum of phase voltages equal zero. That is:
Van + Vbn + Vcn = 0.
Voltage amplitudes, V are rms values,
(a) The line voltages (or line-line-voltages) in figure 8.56 are:
Voltages between lines aa' and bb'
Voltages between lines aa' and cc'
Voltages between lines bb' and cc'.

Line voltage between aa' and bb', Vab is:
Vab = Van - Vbn
Vab = Van<0o - Vbn<(-120)o
So, Vab = V(cos0 + jsin0) - V[cos(-120) + jsin(-120)] = 3/2V + (√3/2)Vj = √3V<30o.
Line voltages between bb' and cc', Vbc is:
Vbc = Vbn - Vcn
= Vbn<(-120)o - Vcn<120o = √3V<(-90)o.
Line voltages between cc' and aa', Vca is:
Vca = Vcn - Van
= Vcn<120o - Van<0o = √3V<150o.
So, amplitudes of line voltages equal √3 times amplitude of phase voltages.

(b) In = current from node n to node n'
= Ia + Ib + Ic
= (Van + Vbn + Vcn)/Z = 0.
So, no need for a conducting wire between the nodes since In = 0.

(c) General expression for instantaneous power p(t):
p(t) = (V2/R)[1 + cos(2ωt + θ)]
where V is rms value.
So, instantaneous power due to source Vanis:
pa(t) = (V2/R)(1 + cos2ωt)
Instantaneous power due to source Vbn is:
pb(t)= (V2/R)[1 + cos(2ωt - 120o)]
Instantaneous power due to source Vcn is:
pc(t)= (V2/R)[1 + cos(2ωt + 120o)]
Total power P(t) = pa(t) + pb(t) + pc(t)
= 3V2/R + (V2/R)[cos2ωt + cos(2ωt - 120o) + cos(2ωt + 120o)] = 3V2/R + 0 = 3V2/R.
So, P(t) is a constant.

The point . is a mathematical abstraction. It has negligible size and a great sense of position. Consequently, it is front and center in abstract existential reasoning.
Single Variable Functions
Conics
Ordinary Differential Equations (ODEs)
Vector Spaces
Real Numbers
Separation Of Variables As Solution Method For Homogeneous Heat Flow Equation
Newton And Fourier Cooling Laws Applied To Heat Flow Boundary Conditions
Fourier Series
Derivation Of Heat Equation For A One-Dimensional Heat Flow


The Universe is composed of matter and radiant energy. Matter is any kind of mass-energy that moves with velocities less than the velocity of light. Radiant energy is any kind of mass-energy that moves with the velocity of light.
Periodic Table
Composition And Structure Of Matter
How Matter Gets Composed
How Matter Gets Composed (2)
Molecular Structure Of Matter
Molecular Shapes: Bond Length, Bond Angle
Molecular Shapes: Valence Shell Electron Pair Repulsion
Molecular Shapes: Orbital Hybridization
Molecular Shapes: Sigma Bonds Pi Bonds
Molecular Shapes: Non ABn Molecules
Molecular Orbital Theory
More Pj Problem Strings

What is Time?
St Augustine On Time
Bergson On Time
Heidegger On Time
Kant On Time
Sagay On Time
What is Space?
Newton On Space
Space Governance
Leaders
Imperfect Leaders
Essence Of Mathematics
Toolness Of Mathematics
The Number Line
Variables
Equations
Functions
The Windflower Saga
Who Am I?
Primordial Equilibrium
Primordial Care
Force Of Being
Forgiveness

Blessed are they that have not seen, and yet have believed. John 20:29

TECTechnic Logo, Kimberlee J. Benart | © 2018 | All rights reserved | Founder and Site Programmer, Peter O. Sagay.