Average AC Power

Home

MarketPlace

The TECTechnics Classroom

Average AC Power


Overview

TECians Login

Strings (SiPjAjk) = S7P3A32     Base Sequence = 12735     String Sequence = 12735 - 3 - 32



Expressions Of Pj Problems
Average AC Power
Math

Pj Problems - Overview
Celestial Stars
The Number Line
Geometries
7 Spaces Of Interest - Overview
Triadic Unit Mesh
Creation
The Atom
Survival
Energy
Light
Heat
Sound
Music
Language
Stories
Work
States Of Matter
Buoyancy
Nuclear Reactions
Molecular Shapes
Electron Configurations
Chemical Bonds
Energy Conversion
Chemical Reactions
Electromagnetism
Continuity
Growth
Human-cells
Proteins
Nucleic Acids
COHN - Natures Engineering Of The Human Body
The Human-Body Systems
Vision
Walking
Behaviors
Sensors Sensings
Beauty
Faith, Love, Charity
Photosynthesis
Weather
Systems
Algorithms
Tools
Networks
Search
Differential Calculus
Antiderivative
Integral Calculus
Economies
Inflation
Markets
Money Supply
Painting

Average AC Power
Figure 8.7 shows a simple AC circuit. Figure 8.7(a) is the time domain circuit while figure 8.7(b) is its phasor form.
Given that the sinusoidal voltage and current of the circuit are as follows:
v(t) = Vcos(ωt); i(t) = Icos(ωt - θ); Determine:
(a) The average power of the circuit in the time domain
(b) The average power of the circuit in the frequency domain.

The string:
S7P3A32 (Force - Push).
The math:
Average AC Power
Pj Problem of interest is of type force. Power and energy problems are force problems. Electric power is a force-push.

(a) General expression for electric power is:
p(t) = v(t)i(t)
So, p(t) = VIcos(ωt)cos(ωt - θ)----(1)
Using the following identities of trigonometry:
2cos2ωt - 1 = cos2(ωt) and cosωtsinωt = (sin2ωt)/2 .
Equation (1) reduces to:
p(t) = (VI/2)cos(θ) + (VI/2)cos(2ωt - θ) ----(2)
(a) The average power, Pav is obtained by integrating p(t) over one cycle of the sinusoidal signal and dividing by the period T, of the signal.
So,
Average AC Power
So, after substituting the expression for p(t) in equation (2) and integrating, we have:
Pav = (VI/2)cosθ

(b) In the frequency domain:
V(jω) = Vej0 and I(jω) = Ie-jθ
So, impedance, Z = (V/I)e
So, I = (V/|Z|)e
Hence, Pav = (V2/2)(1/|Z|)cosθ = (I2/2)(|Z|)cosθ
rms values are usually used for the voltage and current amplitudes.
Where, Vrms = V/√2 and Irms = I/√2.

The point . is a mathematical abstraction. It has negligible size and a great sense of position. Consequently, it is front and center in abstract existential reasoning.
Single Variable Functions
Conics
Ordinary Differential Equations (ODEs)
Vector Spaces
Real Numbers


The Universe is composed of matter and radiant energy. Matter is any kind of mass-energy that moves with velocities less than the velocity of light. Radiant energy is any kind of mass-energy that moves with the velocity of light.
Periodic Table
Composition And Structure Of Matter
How Matter Gets Composed
How Matter Gets Composed (2)
Molecular Structure Of Matter
Molecular Shapes: Bond Length, Bond Angle
Molecular Shapes: Valence Shell Electron Pair Repulsion
Molecular Shapes: Orbital Hybridization
Molecular Shapes: Sigma Bonds Pi Bonds
Molecular Shapes: Non ABn Molecules
Molecular Orbital Theory
More Pj Problem Strings

What is Time?
St Augustine On Time
Bergson On Time
Heidegger On Time
Kant On Time
Sagay On Time
What is Space?
Newton On Space
Space Governance
Leaders
Imperfect Leaders
Essence Of Mathematics
Toolness Of Mathematics
The Number Line
Variables
Equations
Functions
The Windflower Saga
Who Am I?
Primordial Equilibrium
Primordial Care
Force Of Being
Forgiveness

Blessed are they that have not seen, and yet have believed. John 20:29

TECTechnic Logo, Kimberlee J. Benart | © 2018 | All rights reserved | Founder and Site Programmer, Peter O. Sagay.