﻿ Average AC Power

Average AC Power

Strings (SiPjAjk) = S7P3A32     Base Sequence = 12735     String Sequence = 12735 - 3 - 32

Expressions Of Pj Problems
Average AC Power
Math Figure 8.7 shows a simple AC circuit. Figure 8.7(a) is the time domain circuit while figure 8.7(b) is its phasor form.
Given that the sinusoidal voltage and current of the circuit are as follows:
v(t) = Vcos(ωt); i(t) = Icos(ωt - θ); Determine:
(a) The average power of the circuit in the time domain
(b) The average power of the circuit in the frequency domain.

The string:
S7P3A32 (Force - Push).
The math: Pj Problem of interest is of type force. Power and energy problems are force problems. Electric power is a force-push.

(a) General expression for electric power is:
p(t) = v(t)i(t)
So, p(t) = VIcos(ωt)cos(ωt - θ)----(1)
Using the following identities of trigonometry:
2cos2ωt - 1 = cos2(ωt) and cosωtsinωt = (sin2ωt)/2 .
Equation (1) reduces to:
p(t) = (VI/2)cos(θ) + (VI/2)cos(2ωt - θ) ----(2)
(a) The average power, Pav is obtained by integrating p(t) over one cycle of the sinusoidal signal and dividing by the period T, of the signal.
So, So, after substituting the expression for p(t) in equation (2) and integrating, we have:
Pav = (VI/2)cosθ

(b) In the frequency domain:
V(jω) = Vej0 and I(jω) = Ie-jθ
So, impedance, Z = (V/I)e
So, I = (V/|Z|)e
Hence, Pav = (V2/2)(1/|Z|)cosθ = (I2/2)(|Z|)cosθ
rms values are usually used for the voltage and current amplitudes.
Where, Vrms = V/√2 and Irms = I/√2. The point . is a mathematical abstraction. It has negligible size and a great sense of position. Consequently, it is front and center in abstract existential reasoning.
Single Variable Functions
Conics
Ordinary Differential Equations (ODEs)
Vector Spaces
Real Numbers
Separation Of Variables As Solution Method For Homogeneous Heat Flow Equation
Newton And Fourier Cooling Laws Applied To Heat Flow Boundary Conditions
Fourier Series
Derivation Of Heat Equation For A One-Dimensional Heat Flow The Universe is composed of matter and radiant energy. Matter is any kind of mass-energy that moves with velocities less than the velocity of light. Radiant energy is any kind of mass-energy that moves with the velocity of light.
Periodic Table
Composition And Structure Of Matter
How Matter Gets Composed
How Matter Gets Composed (2)
Molecular Structure Of Matter
Molecular Shapes: Bond Length, Bond Angle
Molecular Shapes: Valence Shell Electron Pair Repulsion
Molecular Shapes: Orbital Hybridization
Molecular Shapes: Sigma Bonds Pi Bonds
Molecular Shapes: Non ABn Molecules
Molecular Orbital Theory
More Pj Problem Strings

Blessed are they that have not seen, and yet have believed. John 20:29