Pj Problems - Overview
Celestial Stars
The Number Line
Geometries
7 Spaces Of Interest - Overview
Triadic Unit Mesh
Creation
The Atom
Survival
Energy
Light
Heat
Sound
Music
Language
Stories
Work
States Of Matter
Buoyancy
Nuclear Reactions
Molecular Shapes
Electron Configurations
Chemical Bonds
Energy Conversion
Chemical Reactions
Electromagnetism
Continuity
Growth
Human-cells
Proteins
Nucleic Acids
COHN - Natures Engineering Of The Human Body
The Human-Body Systems
Vision
Walking
Behaviors
Sensors Sensings
Beauty
Faith, Love, Charity
Photosynthesis
Weather
Systems
Algorithms
Tools
Networks
Search
Differential Calculus
Antiderivative
Integral Calculus
Economies
Inflation
Markets
Money Supply
Painting
Levers are simple machines. Figure 128.1 illustrates a 6-inch file scraper (brown) being used to pry up the lid of a can.
(a) Name the other types of simple machines.
(b) What type of lever is the file scraper illustrated in figure 128.1?
(c) The blue arrows associated with the file scraper are
implicitly PjProblemStrings. Make them explicit.
(d) What is the mechanical advantage of the file scraper,
given that MN is 1 inch and NQ is 5 inches?
The strings:
S7P3A32 (Force-Push).
The math:
Pj Problem of Interest is of type force (push/pull).
(a) There are six explicit types of simple machines (lever, inclined plane, block and tackle, wheel and axle, screw and gear). However, physicists group simple machines into levers and inclined planes since block and tackle, wheel and axle and gears can be considered as levers while screws can be considered as inclined planes.
(b) There are three types of levers: first class, second class and third class.
First Class: fulcrum is located between resistance and effort
Second Class: fulcrum is at one end, effort at the other end and resistance is somewhere between the fulcrum and the effort.
Third Class : fulcrum is at one end, resistance is at the other end and effort is somewhere between the fulcrum and the resistance.
So, the file scraper illustrated in figure 128.1 is a first class lever.
(c) Assuming a multi-matter-multi-dynamic space (S7) because of the dynamism of atoms of materials and the fact that there are several matter in the space.
Both the resistance and effort arrows are linearly directed forces (push).
So, the PjProblemStrings S7P3A32 and S7P4A41 are implied.
There is static equilibrium at the fulcrum
So, the PjProblemString (S7P7A71) is implied.
(d) Mechanical Advantage is essentially the gain in effort or the loss in effort. In other words, gain in effort implies the Resistance overcomed is greater than the Effort applied while loss in effort implies the Resistance overcomed is less than the Effort applied.
Mathematical equation for Mechanical Advantage (M.A):
M.A = Reistance/Effort = L/l
Where L = length of effort arm (NQ)
l = length of resistance arm (MN).
So, for the file scraper of figure 128.1, M.A = 5/1 = 5
That is the effort can overcome a resistance that is five times the effort applied.
First Class and Second Class levers provide M.A > 1.
Third Class levers provide fractional M.A. They are often used to speed up resistance at the expense of effort. In other words, effort applied is greater than resistance overcomed because of the desire to overcome the resistance speedily.
The point . is a mathematical abstraction. It has negligible size and a great sense of position. Consequently, it is front and center in abstract existential reasoning.
Derivation Of The Area Of A Circle, A Sector Of A Circle And A Circular Ring
Derivation Of The Area Of A Trapezoid, A Rectangle And A Triangle
Derivation Of The Area Of An Ellipse
Derivation Of Volume Of A Cylinder
Derivation Of Volume Of A Sphere
Derivation Of Volume Of A Cone
Derivation Of Volume Of A Torus
Derivation Of Volume Of A Paraboloid
Volume Obtained By Revolving The Curve y = x2 About The X Axis
Single Variable Functions
Absolute Value Functions
Conics
Real Numbers
Vector Spaces
Equation Of The Ascent Path Of An Airplane
Calculating Capacity Of A Video Adapter Board Memory
Probability Density Functions
Boolean Algebra - Logic Functions
Ordinary Differential Equations (ODEs)
Infinite Sequences And Series
Introduction To Group Theory
Advanced Calculus - Partial Derivatives
Advanced Calculus - General Charateristics Of Partial Differential Equations
Advanced Calculus - Jacobians
Advanced Calculus - Solving PDEs By The Method Of Separation Of Variables
Advanced Calculus - Fourier Series
Advanced Calculus - Multiple Integrals
Production Schedule That Maximizes Profit Given Constraint Equation
Separation Of Variables As Solution Method For Homogeneous Heat Flow Equation
Newton And Fourier Cooling Laws Applied To Heat Flow Boundary Conditions
Fourier Series
Derivation Of Heat Equation For A One-Dimensional Heat Flow
Homogenizing-Non-Homogeneous-Time-Varying-IBVP-Boundary-Condition
The Universe is composed of matter and radiant energy. Matter is any kind of mass-energy that moves with velocities less than the velocity of light. Radiant energy is any kind of mass-energy that moves with the velocity of light.
Periodic Table
Composition And Structure Of Matter
How Matter Gets Composed
How Matter Gets Composed (2)
Molecular Structure Of Matter
Molecular Shapes: Bond Length, Bond Angle
Molecular Shapes: Valence Shell Electron Pair Repulsion
Molecular Shapes: Orbital Hybridization
Molecular Shapes: Sigma Bonds Pi Bonds
Molecular Shapes: Non ABn Molecules
Molecular Orbital Theory
More Pj Problem Strings