Wheel And Axle - The PjProblemStrings

**Strings (S _{i}P_{j}A_{jk}) = S_{7}P_{3}A_{32} Base Sequence = 12735 String Sequence = 12735 - 3 - 32**

Expressions Of Pj Problems

Wheel And Axle - The PjProblemStrings

Math

Pj Problems - Overview

Celestial Stars

The Number Line

Geometries

7 Spaces Of Interest - Overview

Triadic Unit Mesh

Creation

The Atom

Survival

Energy

Light

Heat

Sound

Music

Language

Stories

Work

States Of Matter

Buoyancy

Nuclear Reactions

Molecular Shapes

Electron Configurations

Chemical Bonds

Energy Conversion

Chemical Reactions

Electromagnetism

Continuity

Growth

Human-cells

Proteins

Nucleic Acids

COHN - Natures Engineering Of The Human Body

The Human-Body Systems

Vision

Walking

Behaviors

Sensors Sensings

Beauty

Faith, Love, Charity

Photosynthesis

Weather

Systems

Algorithms

Tools

Networks

Search

Differential Calculus

Antiderivative

Integral Calculus

Economies

Inflation

Markets

Money Supply

Painting

Figure 131.1 illustrates a brace with a screwdriver bit driving a screw. This machine belongs to the class of simple machines called the *wheel and axle*. Some common members of this group are the doorknob and the steering wheel of automobiles.

(a) Physicists say, the wheel and axle is a type of lever. What type of lever is the brace and bit of figure 131.1 ?

(b) What is the theoretical mechanical advantage of the brace and bit of figure 131.1?

(c) Write the PjProblemStrings at play with respect to the brace and bit of figure 131.1?

**The strings**:
S_{7}P_{3}A_{32} (Force-Push).
**The math**:

Pj Problem of Interest is of type *force* (push).

(a) The machine illustrated in figure 131.1 is a second class lever. The resistance is between the fulcrum and the effort as indicated the the top view illustration (131.1B).

Notable: a wheel and axle has the axle rigidly attached to the wheel and the axle rotates with the wheel.

(b) The *theoretical mechanical advantage* (T.M.A) ignores the effect of *friction*. TMA = distance effort moves/distance resistance moves = Resistance/effort.

So, for the machine in figure 131.1:

T.M.A = 5/(1/4) = 20.

The ratio of the diameters of the circumferences of the wheel and axle indicates the mechanical advantage.

(c) Assuming a multi-matter-multi-dynamic space (S_{7}) because of the dynamism of atoms of materials and the fact that there are several matter in the space.

Forces at play of type *push*. PjProblemStrings S_{7}P_{3}A_{32}

Motion at play, *rotational*. PjProblemStrings S_{7}P_{4}A_{42}

static equilibrium at the fulcrum. PjProblemStrings S_{7}P_{7}A_{71}

The *point* **.** is a mathematical abstraction. It has negligible size and a great sense of position. Consequently, it is front and center in abstract existential reasoning.

Single Variable Functions

Conics

Ordinary Differential Equations (ODEs)

Vector Spaces

Real Numbers

Separation Of Variables As Solution Method For Homogeneous Heat Flow Equation

Newton And Fourier Cooling Laws Applied To Heat Flow Boundary Conditions

Fourier Series

Derivation Of Heat Equation For A One-Dimensional Heat Flow

The Universe is composed of *matter* and *radiant energy*. *Matter* is any kind of *mass-energy* that moves with velocities less than the velocity of light. *Radiant energy* is any kind of *mass-energy* that moves with the velocity of light.

Periodic Table

Composition And Structure Of Matter

How Matter Gets Composed

How Matter Gets Composed (2)

Molecular Structure Of Matter

Molecular Shapes: Bond Length, Bond Angle

Molecular Shapes: Valence Shell Electron Pair Repulsion

Molecular Shapes: Orbital Hybridization

Molecular Shapes: Sigma Bonds Pi Bonds

Molecular Shapes: Non ABn Molecules

Molecular Orbital Theory

More Pj Problem Strings