Pj Problems - Overview
Celestial Stars
The Number Line
Geometries
7 Spaces Of Interest - Overview
Triadic Unit Mesh
Creation
The Atom
Survival
Energy
Light
Heat
Sound
Music
Language
Stories
Work
States Of Matter
Buoyancy
Nuclear Reactions
Molecular Shapes
Electron Configurations
Chemical Bonds
Energy Conversion
Chemical Reactions
Electromagnetism
Continuity
Growth
Human-cells
Proteins
Nucleic Acids
COHN - Natures Engineering Of The Human Body
The Human-Body Systems
Vision
Walking
Behaviors
Sensors Sensings
Beauty
Faith, Love, Charity
Photosynthesis
Weather
Systems
Algorithms
Tools
Networks
Search
Differential Calculus
Antiderivative
Integral Calculus
Economies
Inflation
Markets
Money Supply
Painting
Its Tee again! "Mom, check out my periscope", said Tee a sharp 7 year old. "Interesting! So what concept did you use?" Asked her mom. "Total reflection, just total reflection". Tee replied.
Explain Tee's total reflection in the context of the refraction of light.
The strings:
S7P4A41 (Motion - Linear).
The math:
Pj Problem of Interest is of type motion (linear). The ray model of light implies linear motion of light.
The phenomenon of total reflection is associated with refraction (bending of light), which is basically, the change in direction of light as it passes from one medium to another.
Consider figure 21.3, the ray of light originating in air bends towards the line perpendicular to the surface of water, on entering water. The ray makes an angle r, called the angle of refraction, with the perpendicular in water. The ancient thinkers of Alexandria in Egypt, Ptolemy in particular, observed this behaviour of light very early on in their study of light. They were curious about the relationship between the angle of incidence and the angle of refraction. They observed that:
(1) The angle r increased when the angle i increased, but not in a simple pattern.
(2) If the angle i is constant, the angle r varies with different refracting medium. In order words, if the medium in which the ray originates is air, then for the same angle i, the value of angle r for glass would be different from that for water.
Ptolemy's work on refraction enabled mathematician Willebrord Snelluis(aka Snell 1580-1626) and mathematician Renee Descartes (1596-1650) to formulate the law of refraction.
Snell and Descartes successfully argued that given two media (one medium contains the ray that is incident on the separating surface at an angle i with the perpendicular, and the other medium contains the refracted ray with an angle of refraction r), The following equation holds:
(sin i)/(sin r) = v1/v2. ------------(equation 1)
where v1 is the velocity of the incident ray and v2 is the velocity of the refracted ray.
Equation (1) implies that 90 degrees is the maximum angle of incidence possible and 49 degrees is the maximum angle of refraction. So the angle of refraction of a light ray entering water from air cannot be more than 49 degrees.
This scenario is illustrated in figure 21.4(a). The ray SO is assumed to be from the Sun at the horizon. It enters a large body of water at close to 90 degrees. Hence its angle of refraction is approximately 49 degrees. For entities like fish without the knowledge of the refractive property of light, their visual perception from water of objects in the air medium is restricted within the cone as illustrated in figure 21.4(a). The line of vision of such entities from a point P in the water in figure 21.4(b) will follow the line PP' and they will be unaware that the actual object is at N. This notion that all objects above water must be within the 49 degrees-cone around the perpendicular is known as the fish-eye view of the world.
Now suppose the ratio v1/v2 < 1. This is the case where the medium in which the light ray is refracted is less dense than the medium from which the ray originated, for example, a light ray that originates from water and is refracted in air. Figure 21.5(a) is an illustration of this scenario. Notice that the ray is refracted away from the perpendicular. In other words, the angle of refraction r is greater than the angle of incidence i.
Suppose the angle of incidence is 60 degrees (figure 21.5(b)). By equation 1, we have:
sinr =(4/3)(sin60) = (4/3)(0.8660)= 1.155., where v1/v2 = 3/4 (ratio of velocity of light in water to velocity of light in air)
But no angle has its sine value greater than 1. So some other phenomenon is at play. What happened is that the ray did not leave the water so there is no angle of refraction. Instead, the ray was reflected at an angle of reflection equal to the angle of incidence which in this case is 60 degrees. This phenomenon is called Total Reflection.
In general, total reflection occurs if light seeks to pass from one medium to another in which the velocity is greater, and at an angle of incidence greater that a certain angle called the critical angle (49 degrees for water and air). This critical angle is the maximum angle for which refraction is possible. Total reflection implies that a surface (water in our example) can serve as a mirror for some angles of incidence.
The phenomenon of total reflection is used to solve a number of visual problems in real life. It is the concept used by Tee to make her periscope.
Consider figure 21.6(a) which is an illustration of an arrangement of two isosceles right-angled prisms made of glass with the faces BC and B'C' parallel to each other. A light ray OP strikes the face AB perpendicularly and moves straight on in the same direction to strike the face AC because its angle of incidence is zero and there is no refraction on striking the face AB. Its angle of incidence at P on the face of AC is 45 degrees. If the prism is made of flint glass, the critical angle is 37 degrees. So there is total reflection on the surface AC and the angle of reflection is 45 degrees in the direction of PQ. The reflected ray strikes the faces BC and B'C' perpendicularly therefore there is no change in direction. It then goes on to strike the face B'A' at 45 degrees and since this angle of incidence is greater than the critical angle, there is again total reflection with an angle of reflection of 45 degrees in the direction of RO'. The reflected ray strikes the face B'A' perpendicularly and maintains the same direction without refraction. Consequently, the final ray, RO', has the same direction as the original ray, OP, but is displaced by the distance PR.
The periscope is made using the phenomenon of total reflection in the prisms arrangement of figure 21.6(a). The two prisms are at opposite ends of a long vertical tube. The ray OP is the light received above water and the ray RO' is the light received below. The use of prisms is preferred over silvered mirrors because of their longevity and their capacity to reflect almost all the light that strikes a face such as AC (a silvered mirror reflects only about 70%). The binoculars is another instrument that uses the phenomenon of total reflection and the same arrangement of prisms.
The most common use of the refractive property of light is in lenses. Consider figure 21.6(b). Some light rays from an object at Q will strike the lens at points R1, R2, and R3. The rays will be refracted as they enter glass in the directions R1S1,R2S2 and R3S3 respectively. The rays will bend again as they leave the glass medium into the air medium at points S1, S2, and S3. By properly shaping the right and left surfaces of the lens the light from Q can be concentrated at T. Lenses of this type are contained in all optical instruments susch as the telescopes, microscopes, binoculars and cameras.
The point . is a mathematical abstraction. It has negligible size and a great sense of position. Consequently, it is front and center in abstract existential reasoning.
Derivation Of The Area Of A Circle, A Sector Of A Circle And A Circular Ring
Derivation Of The Area Of A Trapezoid, A Rectangle And A Triangle
Derivation Of The Area Of An Ellipse
Derivation Of Volume Of A Cylinder
Derivation Of Volume Of A Sphere
Derivation Of Volume Of A Cone
Derivation Of Volume Of A Torus
Derivation Of Volume Of A Paraboloid
Volume Obtained By Revolving The Curve y = x2 About The X Axis
Single Variable Functions
Absolute Value Functions
Conics
Real Numbers
Vector Spaces
Equation Of The Ascent Path Of An Airplane
Calculating Capacity Of A Video Adapter Board Memory
Probability Density Functions
Boolean Algebra - Logic Functions
Ordinary Differential Equations (ODEs)
Infinite Sequences And Series
Introduction To Group Theory
Advanced Calculus - Partial Derivatives
Advanced Calculus - General Charateristics Of Partial Differential Equations
Advanced Calculus - Jacobians
Advanced Calculus - Solving PDEs By The Method Of Separation Of Variables
Advanced Calculus - Fourier Series
Advanced Calculus - Multiple Integrals
Production Schedule That Maximizes Profit Given Constraint Equation
Separation Of Variables As Solution Method For Homogeneous Heat Flow Equation
Newton And Fourier Cooling Laws Applied To Heat Flow Boundary Conditions
Fourier Series
Derivation Of Heat Equation For A One-Dimensional Heat Flow
Homogenizing-Non-Homogeneous-Time-Varying-IBVP-Boundary-Condition
The Universe is composed of matter and radiant energy. Matter is any kind of mass-energy that moves with velocities less than the velocity of light. Radiant energy is any kind of mass-energy that moves with the velocity of light.
Periodic Table
Composition And Structure Of Matter
How Matter Gets Composed
How Matter Gets Composed (2)
Molecular Structure Of Matter
Molecular Shapes: Bond Length, Bond Angle
Molecular Shapes: Valence Shell Electron Pair Repulsion
Molecular Shapes: Orbital Hybridization
Molecular Shapes: Sigma Bonds Pi Bonds
Molecular Shapes: Non ABn Molecules
Molecular Orbital Theory
More Pj Problem Strings