Kepler's Laws Of Planetary Motions

**Strings (S _{i}P_{j}A_{jk}) = S_{7}P_{4}A_{42} Base Sequence = 12735 String Sequence = 12735 - 4 - 42**

Expressions Of Pj Problems

Kepler's Laws Of Planetary Motions

Math

Pj Problems - Overview

Celestial Stars

The Number Line

Geometries

7 Spaces Of Interest - Overview

Triadic Unit Mesh

Creation

The Atom

Survival

Energy

Light

Heat

Sound

Music

Language

Stories

Work

States Of Matter

Buoyancy

Nuclear Reactions

Molecular Shapes

Electron Configurations

Chemical Bonds

Energy Conversion

Chemical Reactions

Electromagnetism

Continuity

Growth

Human-cells

Proteins

Nucleic Acids

COHN - Natures Engineering Of The Human Body

The Human-Body Systems

Vision

Walking

Behaviors

Sensors Sensings

Beauty

Faith, Love, Charity

Photosynthesis

Weather

Systems

Algorithms

Tools

Networks

Search

Differential Calculus

Antiderivative

Integral Calculus

Economies

Inflation

Markets

Money Supply

Painting

planet A revolves around the Sun, S (figure 122.1):

(a) Describe its path around the sun.

(b) Is the velocity of A constant throughout its revolution around the sun?

(c) Relate the period of A's revolution to its mean distance from the sun.

**The strings**:
S_{7}P_{4}A_{42} (Motion - Rotation).
**The math**:

Pj Problem of Interest is of type *motion* (rotation).

(a) A's path is elliptic.

Kepler's First Law: each planet moves on an ellipse and the sun is at one focus.

(b) No. Planet A does not move at constant velocity around the sun. It moves faster when closer to the sun. This is a consequence of Kepler's second law.

Kepler's Second Law: a line drawn from the sun to the planet sweeps out equal areas in equal times. Area ABS is equal to area SCD in equal times (figure122.1). So arc CD is longer than arc AB.

(c) If T is the period of revolution of any planet around the sun and D is its mean distance from the sun, then:

T^{2} = kD^{3}.

Where T is period of revolution

k is a constant and is the same for all the planets.

D is the mean distance from the sun.

The *point* **.** is a mathematical abstraction. It has negligible size and a great sense of position. Consequently, it is front and center in abstract existential reasoning.

Single Variable Functions

Conics

Ordinary Differential Equations (ODEs)

Vector Spaces

Real Numbers

Separation Of Variables As Solution Method For Homogeneous Heat Flow Equation

Newton And Fourier Cooling Laws Applied To Heat Flow Boundary Conditions

Fourier Series

Derivation Of Heat Equation For A One-Dimensional Heat Flow

The Universe is composed of *matter* and *radiant energy*. *Matter* is any kind of *mass-energy* that moves with velocities less than the velocity of light. *Radiant energy* is any kind of *mass-energy* that moves with the velocity of light.

Periodic Table

Composition And Structure Of Matter

How Matter Gets Composed

How Matter Gets Composed (2)

Molecular Structure Of Matter

Molecular Shapes: Bond Length, Bond Angle

Molecular Shapes: Valence Shell Electron Pair Repulsion

Molecular Shapes: Orbital Hybridization

Molecular Shapes: Sigma Bonds Pi Bonds

Molecular Shapes: Non ABn Molecules

Molecular Orbital Theory

More Pj Problem Strings