Advanced Calculus - General Characteristics Of Partial Differential Equations

Order, linearity, nonlinearity. Homogeneity, nonhomogeneity, parabolic, hyperbolic, elliptic

/ is the division symbol

For each of the partial differential equation (PDE) presented, determine the order, linearity or nonlinearity, homogeneity or nonhomogeneity and whether it is parabolic or hyperbolic or elliptic .
(1) $u_{t}=u_{x x}$

Ans (1) Order is 2 ; linear (power of depended variable <2, or and dependent variable not multiplied by its derivative); nonhomogeneous because cannot be expressed in the form:
$A u_{x x}+B u_{x t}+C u_{t t}+D u_{x}+E u_{t}+\mathbf{F u}(x, t)=\mathbf{G}(\mathbf{x}, \mathbf{t})------------(1)$, such that $G(x, t)=0$.
A partial differential equation is linear and homogeneous if it is expressed in the form of equation (1) and the G (right hand side) is zero. $A=1, B=0, C=0$. Parabolic, $B^{2}-4 A C=0$.
(2) $u_{t}=u u_{x x x}+\sin x$

Ans (2) Order is 3; nonlinear (depended variable u multiplies its derivative) Nonhomogeneous. Parobolic, hyperbolic and elliptic apply to linear PDEs.
(3) $\mathrm{u}_{\mathrm{t}}=\mathrm{u}_{\mathrm{rr}}+(1 / \mathrm{r}) \mathrm{u}_{\mathrm{r}}+\left(1 / \mathrm{r}^{2}\right) \mathrm{u}_{\theta \theta \theta}$

Ans (3) Order is 3; linear; however, not in the form of equation (1); nonhomogeneous.
(4) $u_{t t}=e-{ }^{-t} u_{x x}+\sin t$

Ans (4) Order is 2; linear; nonhomogeneous; $B=0, A=-e-t, C=1$. Hyperbolic, $B^{2}-4 A C>0$.
(5) $\mathrm{uu}_{\mathrm{xx}}+\mathrm{u}_{\mathrm{t}}=0$

Ans (5) Order is 2; nonlinear (dependent variable multiplies its derivative); nonhomogeneous.
(6) $u_{x x}+y u_{y y}=0$

Ans (6) Order is 2; linear (y is an independent variable); $A=1, B=0, C=y$.
Elliptic, $\mathrm{B}^{2}-4 \mathrm{AC}=-4 \mathrm{y}<0($ for $\mathrm{y}>0$)
Parabolic, $\mathrm{B}^{2}-4 \mathrm{AC}=0($ for $\mathrm{y}=0)$
hyperbolic, $\mathrm{B}^{2}-4 \mathrm{AC}>0($ for $\mathrm{y}<0)$
(7) $u_{x y}=0$

Ans (7) Order is 2; linear; homogeneous, $\mathrm{B}=1, \mathrm{~A}=0, \mathrm{C}=0$
Hyperbolic, $\mathrm{B}^{2}-4 \mathrm{AC}=1>0$.

Advanced Calculus - General Characteristics Of Partial Differential Equations

Order, linearity, nonlinearity. Homogeneity, nonhomogeneity, parabolic, hyperbolic, elliptic
(8) $u_{t t}=u_{x x}$

Ans (8) Order is 2; linear, nonhomogeneous; $A=-1, B=0, C=1$ Hyperbolic, $\mathrm{B}^{2}-4 \mathrm{AC}>0$.
(9) $u_{x x}+u_{y y}=0$

Ans (9) Order is 2; linear; homogeneous; $\mathrm{A}=1, \mathrm{~B}=0, \mathrm{C}=1$
Elliptic, $\mathrm{B}^{2}-4 \mathrm{AC}<0$.
(10) $y u_{x x}+u_{y y}=0$

Ans (10) order is 2; linear; homogeneous; $\mathrm{A}=\mathrm{y}, \mathrm{B}=0, \mathrm{C}=1$
$\mathrm{B}^{2}-4 \mathrm{AC}=-4 \mathrm{y}$. Parabolic for $\mathrm{y}=0$; hyperbolic for $\mathrm{y}<0$; Elliptic for $\mathrm{y}>0$.
(11) $u_{t}=u_{x x}+2 u_{x}+u$

Ans (11) order is 2; linear, nonhomogeneous; $\mathrm{A}=1, \mathrm{~B}=0, \mathrm{C}=0$
Parabolic, $\mathrm{B}^{2}-4 \mathrm{AC}=0$.
(12) $u_{t}=u_{x x}+e^{-t}$

Ans (12) Order is 2; linear, nonhomogeneous; $A=-1, B=0, C=0$ Hyperbolic $\mathrm{B}^{2}-4 \mathrm{AC}>0$.
(13) $u_{x x}+3 u_{x y}+u_{y y}=\sin x$

Ans (13) Order is 2; linear; nonhomogeneous; $\mathrm{A}=1, \mathrm{~B}=3, \mathrm{C}=1$ Hyperbolic, $\mathrm{B}^{2}-4 \mathrm{AC}>0$.
(14) $u_{t t}=u u_{x x x x}+e^{-t}$

Ans (14) Order is 4; nonlinear (dependent variable multiplies its derivative).

Peter Oye Simate Sagay
Simate was my mother
Sagay was my father.

