Advanced Calculus - Jacobians

/ is the division symbol

The mathematical modeling of complex existential problems often result in systems of partial differential equations. Several methods exist for determining the partial derivatives of such equations. The Jacobian is an effective method used to determine the partial derivatives of a system of partial differential equations, particularly when the number of equations are greater than two.

Consider the scenario with the following propositions:
(a) $F(u, v, w, x, y, z), G(u, v, w, x, y, z), H(u, v, w, x, y, z), f(x, y, z), g(x, y, z), h(x, y, z) \in C^{1}$
(b) $F(f(x, y, z), g(x, y, z), h(x, y, z), x, y, z) \equiv 0$
(c) $G(f(x, y, z), g(x, y, z), h(x, y, z), x, y, z) \equiv 0$
(d) $H(f(x, y, z), g(x, y, z), h(x, y, z), x, y, z) \equiv 0$

Then there exist, the Jacobians of F, G, H with respect to any subset of the variables of F, G, and H.
For example, the Jacobian of F, G, H with respect to u, v, x is as follows:

$$
\boldsymbol{\delta}(\mathbf{F}, \mathbf{G}, \mathrm{H}) / \boldsymbol{\delta}(\mathbf{u}, \mathrm{v}, \mathrm{x})=\left\lvert\, \begin{array}{lll}
\mathbf{F}_{1} & \mathbf{G}_{1} & \mathbf{H}_{1} \\
\mathbf{F}_{2} & \mathbf{G}_{2} & \mathbf{H}_{2} \\
\mathrm{~F}_{4} & \mathbf{G}_{4} & \mathbf{H}_{4}
\end{array}\right.
$$

Note how positions of the variables in F, G, and H is reflected in the partial derivatives in determinant .
And, $\boldsymbol{\delta} \mathbf{u} / \boldsymbol{\delta} \mathbf{x}=-[\boldsymbol{\delta}(\mathbf{F}, \mathbf{G}, \mathbf{H}) / \boldsymbol{\delta}(\mathbf{u}, \mathbf{v}, \mathbf{x})] /[\boldsymbol{\delta}(\mathbf{F}, \mathbf{G}, \mathbf{H}) / \boldsymbol{\delta}(\mathbf{u}, \mathbf{v}, \mathbf{w})] ; \quad \delta(\mathrm{F}, \mathrm{G}, \mathrm{H}) / \delta(\mathrm{u}, \mathrm{v}, \mathrm{w}) \neq 0$.
Other partial derivatives implicit in F, G, H can be similarly determined via their respective Jacobians.
(1) Determine $\delta(\mathrm{F}, \mathrm{G}, \mathrm{H}) / \delta(\mathrm{u}, \mathrm{w}, \mathrm{v})$, If:
$F=x u+v-y$
$G=u^{2}+v y+w$
$\mathrm{H}=\mathrm{zu}-\mathrm{v}+\mathrm{vw}$
Ans (1)

$$
\delta(F, G, H) / \delta(u, w, v)=\left|\begin{array}{ccc}
F_{1} & G_{1} & H_{1} \\
F_{3} & G_{3} & H_{3} \\
F_{2} & G_{2} & H_{2}
\end{array}\right|=\left|\begin{array}{ccc}
x & 2 u & z \\
0 & 1 & v \\
1 & y & w-1
\end{array}\right|=x(w-1-y v)-2 u(-v)+z(-1)
$$

$=x w-x-x y v+2 u v-z=2 u v+x w-x-x y v-z$.
(2) Find $\delta u / \delta x, \delta u / \delta y$ by use of Jacobians If $u=f(u, v, x) \quad v=g(u, v, y)$

Ans (2) Set $F(u, v, x, y)=u-f(u, v, x) ; G(u, v, x, y)=v-g(u, v, y)$
So, $\delta \mathrm{u} / \delta \mathrm{x}=-[\delta(\mathrm{F}, \mathrm{G}) / \delta(\mathrm{x}, \mathrm{v})] /[\delta(\mathrm{F}, \mathrm{G}) / \delta(\mathrm{u}, \mathrm{v})]=\mathrm{f}_{3}\left(1-\mathrm{g}_{2}\right) /\left[\left(1-\mathrm{f}_{1}\right)\left(1-\mathrm{g}_{2}\right)-\mathrm{f}_{2} \mathrm{~g}_{1}\right]$
So, $\delta u / \delta y=-[\delta(F, G) / \delta(y, v)] /[\delta(F, G) / \delta(u, v)]=f_{2} g_{3} /\left[\left(1-f_{1}\right)\left(1-g_{2}\right)-f_{2} g_{1}\right]$.

Advanced Calculus - Jacobians

(3) If $\mathrm{F}(\mathrm{x}, \mathrm{y}, \mathrm{u})=0$, is $\delta \mathrm{u} / \delta \mathrm{x}$ equal to the reciprocal of $\delta \mathrm{x} / \delta \mathrm{u}$?

Ans (3) $\delta \mathrm{u} / \delta \mathrm{x}=-(\delta \mathrm{F} / \delta \mathrm{x}) /(\delta \mathrm{F} / \delta \mathrm{u})=-\mathrm{F}_{1} / \mathrm{F}_{3}$
$\delta \mathrm{x} / \delta \mathrm{u}=-(\delta \mathrm{F} / \delta \mathrm{u}) /\left(\delta \mathrm{F} / \delta \mathrm{x}=-\mathrm{F}_{3} / \mathrm{F}_{1}\right.$
So, yes $\delta u / \delta x=$ reciprocal of $\delta x / \delta u$.
(4) If $F(x, y, u, v)=0, G(x, y, u, v)=0$, is $\delta u / \delta x$ equal to the reciprocal of $\delta x / \delta u$?

Ans (4) u, v as depedent variable:
$\delta \mathrm{u} / \delta \mathrm{x}=-(\delta(\mathrm{F}, \mathrm{G})) / \delta(\mathrm{x}, \mathrm{v})) /(\delta(\mathrm{F}, \mathrm{G}) / \delta(\mathrm{u}, \mathrm{v}))=-\left(\mathrm{F}_{1} \mathrm{G}_{4}-\mathrm{F}_{4} \mathrm{G}_{1}\right) /\left(\mathrm{F}_{3} \mathrm{G}_{4}-\mathrm{F}_{4} \mathrm{G}_{3}\right)$
x , y as dependent variable:
$\delta \mathrm{x} / \delta \mathrm{u}=-(\delta(\mathrm{F}, \mathrm{G})) / \delta(\mathrm{u}, \mathrm{y})) /(\delta(\mathrm{F}, \mathrm{G}) / \delta(\mathrm{x}, \mathrm{y}))=-\left(\mathrm{F}_{3} \mathrm{G}_{2}-\mathrm{F}_{2} \mathrm{G}_{3}\right) /\left(\mathrm{F}_{1} \mathrm{G}_{2}-\mathrm{F}_{2} \mathrm{G}_{1}\right)$
So, No $\delta \mathrm{u} / \delta \mathrm{x} \neq$ reciprocal of $\delta \mathrm{x} / \delta \mathrm{u}$.
(5) Find the derivative of u with respect to x if

$$
\begin{aligned}
x u+u v & =u-x \\
v^{2}+x v & =u+x
\end{aligned}
$$

Is the derivative total or partial ?
Ans (5) Set $F(u, v, x)=x u+u v-u+x=0$

$$
G(u, v, x)=v^{2}+x v-u+x=0
$$

Then, $\mathrm{du} / \mathrm{dx}=-(\delta(\mathrm{F}, \mathrm{G})) / \delta(\mathrm{x}, \mathrm{v})) /(\delta(\mathrm{F}, \mathrm{G}) / \delta(\mathrm{u}, \mathrm{v})) \quad(\delta(\mathrm{F}, \mathrm{G}) / \delta(\mathrm{u}, \mathrm{v})) \neq 0$
$\mathrm{dv} / \mathrm{dx}=-(\delta(\mathrm{F}, \mathrm{G})) / \delta(\mathrm{v}, \mathrm{x})) /(\delta(\mathrm{F}, \mathrm{G}) / \delta(\mathrm{u}, \mathrm{v}))$
So, du/dx $=-\left(\mathrm{F}_{3} \mathrm{G}_{2}-\mathrm{F}_{2} \mathrm{G}_{3}\right) /\left(\mathrm{F}_{1} \mathrm{G}_{2}-\mathrm{F}_{2} \mathrm{G}_{1}\right)$

$$
=-[(u+1)(2 v+x)-u(v+1)] /[(x+v-1)(2 v+x)-u(-1)] .
$$

Derivative is total since there is a single independent variable.
(6) If $F(u, v, g(u, v, x))=0$ and $G(u, v, h(u, v, x))=0$; Find $\delta u / \delta x$.

Ans (6) $\delta(\mathrm{F}, \mathrm{G})) / \delta(\mathrm{x}, \mathrm{v})=\left|\begin{array}{ll}\mathrm{F}_{3} \mathrm{~g}_{3} & \mathrm{G}_{3} h_{3} \\ \mathrm{~F}_{2}+\mathrm{F}_{3} \mathrm{~g}_{2} & \mathrm{G}_{2}+\mathrm{G}_{3} h_{2}\end{array}\right|=\left[\mathrm{F}_{3} \mathrm{~g}_{3}\left(\mathrm{G}_{2}+\mathrm{G}_{3} \mathrm{~h}_{2}\right)-\mathrm{G}_{3} \mathrm{~h}_{3}\left(\mathrm{~F}_{2}+\mathrm{F}_{3} \mathrm{~g}_{2}\right)\right]$
$\delta(\mathrm{F}, \mathrm{G})) / \delta(\mathrm{u}, \mathrm{v})=\left|\begin{array}{ll}\mathrm{F}_{1}+\mathrm{F}_{3} \mathrm{~g}_{1} & \mathrm{G}_{1}+\mathrm{G}_{3} \mathrm{~h}_{1} \\ \mathrm{~F}_{2}+\mathrm{F}_{3} \mathrm{~g}_{2} & \mathrm{G}_{2}+\mathrm{G}_{3} \mathrm{~h}_{2}\end{array}\right|=\left[\left(\mathrm{F}_{1}+\mathrm{F}_{3} \mathrm{~g}_{1}\right)\left(\mathrm{G}_{2}+\mathrm{G}_{3} \mathrm{~h}_{2}\right)-\left(\mathrm{F}_{2}+\mathrm{F}_{3} \mathrm{~g}_{2}\right)\left(\mathrm{G}_{1}+\mathrm{G}_{3} \mathrm{~h}_{1}\right)\right] \neq 0$

So, $\delta \mathrm{u} / \delta \mathrm{x}=-(\delta(\mathrm{F}, \mathrm{G})) / \delta(\mathrm{x}, \mathrm{v})) /(\delta(\mathrm{F}, \mathrm{G})) / \delta(\mathrm{u}, \mathrm{v}))$
$=-\left[F_{3} g_{3}\left(G_{2}+G_{3} h_{2}\right)-G_{3} h_{3}\left(F_{2}+F_{3} g_{2}\right)\right] /\left[\left(F_{1}+F_{3} g_{1}\right)\left(G_{2}+G_{3} h_{2}\right)-\left(F_{2}+F_{3} g_{2}\right)\left(G_{1}+G_{3} h_{1}\right)\right]$.

Peter Oye Simate Sagay
Simate was my mother
Sagay was my father

