Velocity Of Load Up An Inclined Plane

Strings (SiPjAjk) = S7P3A31     Base Sequence = 12735     String Sequence = 12735 - 5 - 51

﻿

Expressions Of Pj Problems
Velocity Of Load Up An Inclined Plane
Math

A cable exerts a constant force of 600 lbs to pull a 1000 lb load up a 2-degree inclined plane. How fast will the load be moving up the inclined plane 10 secs after the pull is applied if the coefficient of friction μ, between the load and the plane is 0.5.

The string:
(a) S7P5A51 (Physical Change - Velocity).
The math:

Pj Problem of interest is of type chnage. Problems of speed, velocity, acceleration, time (duration) are change problems.
Consider the above diagram (fig. 3):
The resultant force R, that caused the pull up the plane is calculated as follows:
R = forcing action on load - force resisting motion of load.
R = 600 - W(μcosθ + sinθ)
So, R = 600 - 1000(0.5cos2o + sin2o)
So, R = 600 - 535 = 65 lbs.
Next we use the impulse momentum, Rt to calculate velocity.
So, Rt = (W/g)[vf - vo].
Where W/g is mass of load; vf is velocity after 10 secs; and vo is velocity just before pull is applied.
So, 65 x 10 = (1000/32)[vf - 0].
So, vf = 20.9 ft/sec.
So, load is moving at 20.9 ft/sec up the inclined plane 10 secs after the pull is applied.

The point . is a mathematical abstraction. It has negligible size and a great sense of position. Consequently, it is front and center in abstract existential reasoning.
Single Variable Functions
Conics
Ordinary Differential Equations (ODEs)
Vector Spaces
Real Numbers
Separation Of Variables As Solution Method For Homogeneous Heat Flow Equation
Newton And Fourier Cooling Laws Applied To Heat Flow Boundary Conditions
Fourier Series
Derivation Of Heat Equation For A One-Dimensional Heat Flow

The Universe is composed of matter and radiant energy. Matter is any kind of mass-energy that moves with velocities less than the velocity of light. Radiant energy is any kind of mass-energy that moves with the velocity of light.
Periodic Table
Composition And Structure Of Matter
How Matter Gets Composed
How Matter Gets Composed (2)
Molecular Structure Of Matter
Molecular Shapes: Bond Length, Bond Angle
Molecular Shapes: Valence Shell Electron Pair Repulsion
Molecular Shapes: Orbital Hybridization
Molecular Shapes: Sigma Bonds Pi Bonds
Molecular Shapes: Non ABn Molecules
Molecular Orbital Theory
More Pj Problem Strings

Blessed are they that have not seen, and yet have believed. John 20:29