Change In Entropy, Enthalpy And Gibbs Free Energy In The Synthesis Reaction Of Carbon-Monoxide And Chlorine
TECTechnics Classroom   TECTechnics Overview

Change In Entropy, Enthalpy And Gibbs Free Energy In The Synthesis Reaction Of Carbon-Monoxide And Chlorine

Given the information in figure 14.21, determine:
ΔSo, ΔHo, ΔGo for the following reaction at 25oC:

CO(g) + Cl2(g) -------> COCl2(g)

The strings:

S7P5A52 (Change - Chemical Change)

The math:
Pj Problem of Interest is of type change (entropy change). Entropy, enthalpy and Gibbs free energy are state variables and the problem of interest is the change in these states as a result of the systhesis reaction of CO and Cl2.

Change in entropy = Entropy of products - entropy of reactancts
So, ΔSo = So of COCl2 - (So of CO + So of Cl2)
So, ΔSo = 69.1 -(47.3 + 53.3) = -31.5 cal/mole-oK

Change in enthalpy = Enthalpy of formation of products - enthalpy of formation of reactants
So,ΔHo = ΔHof of COCl2 - (ΔHof of CO + ΔHof of Cl2)
So, ΔHo = -53.3 -(-26.4 + 0) = -53.3 + 26.4 = -26.9 Kcal = -26900 cal.

Change in Gibbs free energy = ΔGo = ΔHo - TΔSo where T is temperature in degree Kelvin.
So, ΔGo = -26900 - 298(-31.5) = -17513 = -17.5 Kcal.

The values of ΔSo, ΔHo, ΔGo are all negative. This indicates that this reaction will be spontaneous at low temperature.

Blessed are they that have not seen, and yet have believed. John 20:29